DIOR数据集下载及预处理

2023-11-08 01:30
文章标签 数据 下载 预处理 dior

本文主要是介绍DIOR数据集下载及预处理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

数据集下载

天翼云盘18713912310账号

其中包括四个文件夹Annotations、ImageSets、JPEGImages-test和JPEGImages-trainval四个文件夹。

Annotations包括Horizontal Bounding Boxes和Oriented Bounding Boxes两个文件夹,用于存放标签。

JPEGImages-test和JPEGImages-trainval分别存放了数据集的测试集图片和训练集验证集图片。

数据预处理

我们需要将xml格式的标签转换为yolov5所使用的txt格式标签,再对数据集按照6:2:2分为训练集、验证集和测试集。

首先,我们在DIOR数据集文件夹下创建文件夹JPEGImages用于存放所有图片,就是将JPEGImages-test和JPEGImages-trainval文件夹下的图片复制到该文件夹中。

然后在DIOR文件夹下创建.py文件用于将标签转化为txt格式,以及对数据集进行划分。可命名为DIORxml2txtYOLOv5.py,代码如下。

# DIORxml2txtYOLOv5.py
# coding:utf-8import os
import random
import argparseimport xml.etree.ElementTree as ET
from os import getcwd
from shutil import copyfileparser = argparse.ArgumentParser()
# xml文件的地址,根据自己的数据进行修改 xml一般存放在Annotations下
parser.add_argument('--xml_path', default='./Annotations/Horizontal Bounding Boxes', type=str, help='input xml label path')
# 数据集的划分,地址选择自己数据下的ImageSets/Mainopt = parser.parse_args()sets = ['train', 'val', 'test']
classes = ['airplane', 'airport', 'baseballfield', 'basketballcourt', 'bridge', 'chimney', 'dam','Expressway-Service-area', 'Expressway-toll-station', 'golffield', 'groundtrackfield', 'harbor','overpass', 'ship', 'stadium', 'storagetank', 'tenniscourt', 'trainstation', 'vehicle', 'windmill']abs_path = os.getcwd()
print(abs_path)if not os.path.exists('DIOR_dataset/'):os.makedirs('DIOR_dataset/')if not os.path.exists('DIOR_dataset/labels/'):os.makedirs('DIOR_dataset/labels/')
if not os.path.exists('DIOR_dataset/labels/train'):os.makedirs('DIOR_dataset/labels/train')
if not os.path.exists('DIOR_dataset_yolo/labels/test'):os.makedirs('DIOR_dataset/labels/test')
if not os.path.exists('DIOR_dataset_yolo/labels/val'):os.makedirs('DIOR_dataset/labels/val')if not os.path.exists('DIOR_dataset/images/'):os.makedirs('DIOR_dataset/images/')
if not os.path.exists('DIOR_dataset/images/train'):os.makedirs('DIOR_dataset/images/train')
if not os.path.exists('DIOR_dataset/images/test'):os.makedirs('DIOR_dataset/images/test')
if not os.path.exists('DIOR_dataset/images/val'):os.makedirs('DIOR_dataset/images/val')def convert(size, box):dw = 1. / (size[0])dh = 1. / (size[1])x = (box[0] + box[1]) / 2.0 - 1y = (box[2] + box[3]) / 2.0 - 1w = box[1] - box[0]h = box[3] - box[2]x = x * dww = w * dwy = y * dhh = h * dhreturn x, y, w, hdef convert_annotation(image_id, path):
#输入输出文件夹,根据实际情况进行修改in_file = open('./Annotations/Horizontal Bounding Boxes/%s.xml' % (image_id), encoding='UTF-8')out_file = open('DIOR_dataset/labels/' + path + '/%s.txt' % (image_id), 'w')tree = ET.parse(in_file)root = tree.getroot()size = root.find('size')w = int(size.find('width').text)h = int(size.find('height').text)for obj in root.iter('object'):#difficult = obj.find('difficult').text#difficult = obj.find('Difficult').textcls = obj.find('name').textif cls not in classes:continuecls_id = classes.index(cls)xmlbox = obj.find('bndbox')b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),float(xmlbox.find('ymax').text))b1, b2, b3, b4 = b# 标注越界修正if b2 > w:b2 = wif b4 > h:b4 = hb = (b1, b2, b3, b4)bb = convert((w, h), b)out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')train_percent = 0.6
test_percent = 0.2
val_percent = 0.2xmlfilepath = opt.xml_path
# txtsavepath = opt.txt_path
total_xml = os.listdir(xmlfilepath)
# if not os.path.exists(txtsavepath):
#     os.makedirs(txtsavepath)num = len(total_xml)
list_index = range(num)
list_index = list(list_index)
random.shuffle(list_index)train_nums = list_index[:int(num * train_percent)]
test_nums = list_index[int(num * train_percent): int(num * test_percent)+int(num * train_percent)]
val_nums = list_index[int(num * test_percent)+int(num * train_percent):]for i in list_index:name = total_xml[i][:-4]if i in train_nums:convert_annotation(name, 'train')   # lablesimage_origin_path = './JPEGImages/' + name + '.jpg'image_target_path = 'DIOR_dataset/images/train/' + name + '.jpg'copyfile(image_origin_path, image_target_path)if i in test_nums:convert_annotation(name, 'test')   # lablesimage_origin_path = './JPEGImages/' + name + '.jpg'image_target_path = 'DIOR_dataset/images/test/' + name + '.jpg'copyfile(image_origin_path, image_target_path)if i in val_nums:convert_annotation(name, 'val')   # lablesimage_origin_path = './JPEGImages/' + name + '.jpg'image_target_path = 'DIOR_dataset/images/val/' + name + '.jpg'copyfile(image_origin_path, image_target_path)

最终在当前目录下生成DIOR_dataset文件夹,其中包含两个文件夹images和labels。

images和labels文件夹下分别包含了训练集、验证集和测试集的图片和标签。

但这种格式还无法直接进行训练,因为yolov5查询标签的方式是在储存图片的文件夹的上级目录下找到labels文件夹,所以我们还需对格式进行调整。

首先在DIOR_dataset文件夹下创建test、train、val文件夹。再将原images下的test、train、val下的图片剪切到对应的刚创建好的文件夹下的images文件夹下,将原labels文件夹下的test、train、val下的标签剪切到对应的刚创建好的文件夹下的labels文件夹下,即:

DIOR_dataset/images/test-----→DIOR_dataset/test/images
DIOR_dataset/images/train-----→DIOR_dataset/train/images
DIOR_dataset/images/val-----→DIOR_dataset/val/images
DIOR_dataset/labels/test-----→DIOR_dataset/test/labels
DIOR_dataset/labels/train-----→DIOR_dataset/train/labels
DIOR_dataset/labels/val-----→DIOR_dataset/val/labels

完成格式调整,最终如下所示。

test、train和val文件夹下分别是各自的images和labels文件夹。

至此,预处理部分就结束了。

编写data.yaml文件

在DIOR_dataset文件夹下创建data.yaml文件,内容如下。

# Path: ../datasets/DIOR_data/DIOR_dataset/data.yaml
# path
# ├── Yolo_v5
# └── datasets
#     └── DIOR_data
#         └── DIOR_dataset
#             ├── test
#             ├── train
#             ├── val
#             └── data.yaml   ← Theretrain: ../../datasets/DIOR_data/DIOR_dataset/train/images  # train images (relative to 'path') 128 images
val: ../../datasets/DIOR_data/DIOR_dataset/val/images  # val images (relative to 'path') 128 images
test: ../../datasets/DIOR_data/DIOR_dataset/test/images  # test images (optional)
nc: 20
# Classes
names: ['airplane','airport','baseball field','basketball court','bridge','chimney','dam','expressway service area','expressway toll station','golf course','ground track field','harbor','overpass','ship','stadium','storage tank','tennis court','train station','vehicle','wind mill']

这篇关于DIOR数据集下载及预处理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/367137

相关文章

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

mysql中的数据目录用法及说明

《mysql中的数据目录用法及说明》:本文主要介绍mysql中的数据目录用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、版本3、数据目录4、总结1、背景安装mysql之后,在安装目录下会有一个data目录,我们创建的数据库、创建的表、插入的

Navicat数据表的数据添加,删除及使用sql完成数据的添加过程

《Navicat数据表的数据添加,删除及使用sql完成数据的添加过程》:本文主要介绍Navicat数据表的数据添加,删除及使用sql完成数据的添加过程,具有很好的参考价值,希望对大家有所帮助,如有... 目录Navicat数据表数据添加,删除及使用sql完成数据添加选中操作的表则出现如下界面,查看左下角从左

SpringBoot中4种数据水平分片策略

《SpringBoot中4种数据水平分片策略》数据水平分片作为一种水平扩展策略,通过将数据分散到多个物理节点上,有效解决了存储容量和性能瓶颈问题,下面小编就来和大家分享4种数据分片策略吧... 目录一、前言二、哈希分片2.1 原理2.2 SpringBoot实现2.3 优缺点分析2.4 适用场景三、范围分片

Redis分片集群、数据读写规则问题小结

《Redis分片集群、数据读写规则问题小结》本文介绍了Redis分片集群的原理,通过数据分片和哈希槽机制解决单机内存限制与写瓶颈问题,实现分布式存储和高并发处理,但存在通信开销大、维护复杂及对事务支持... 目录一、分片集群解android决的问题二、分片集群图解 分片集群特征如何解决的上述问题?(与哨兵模

浅析如何保证MySQL与Redis数据一致性

《浅析如何保证MySQL与Redis数据一致性》在互联网应用中,MySQL作为持久化存储引擎,Redis作为高性能缓存层,两者的组合能有效提升系统性能,下面我们来看看如何保证两者的数据一致性吧... 目录一、数据不一致性的根源1.1 典型不一致场景1.2 关键矛盾点二、一致性保障策略2.1 基础策略:更新数

Oracle 数据库数据操作如何精通 INSERT, UPDATE, DELETE

《Oracle数据库数据操作如何精通INSERT,UPDATE,DELETE》在Oracle数据库中,对表内数据进行增加、修改和删除操作是通过数据操作语言来完成的,下面给大家介绍Oracle数... 目录思维导图一、插入数据 (INSERT)1.1 插入单行数据,指定所有列的值语法:1.2 插入单行数据,指