为什么python如此火爆_用Python来分析一波周董新曲《说好不哭》为何如此火爆!...

2023-11-07 20:30

本文主要是介绍为什么python如此火爆_用Python来分析一波周董新曲《说好不哭》为何如此火爆!...,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

291758a0ea83da4aa7709e549a61f372.png

9 月 16 日晚间,周董在朋友圈发布了最新单曲《说好不哭》

发布后,真的让一波人哭了

一群想抢鲜听的小伙伴直接泪奔

因为 QQ 音乐直接被搞崩了

没想到干翻 QQ 音乐的不是网易云音乐

也不是虾米音乐

而是周董!

周董成成功地凭一己之力干翻了 QQ 音乐

那么听过周董新歌后的小伙伴都是怎么评价的呢?

这里,我们获取了 QQ 音乐的近 20W 条评论数据进行分析

看看其中有哪些有趣的东西

一、数据获取

1、请求分析

在 QQ 网页版直接搜索『说好不哭』

很容易就能找到单曲页面

70e4e81e348f186aacd2e72b1efb11d2.png

说好不哭

拉到页面最下方

可以看到评论的分页查看按钮

44850b4a5d4219ed71558d6b0defc148.png

分页查看

按下 F12 点击第二页

在请求流中就可以看到对应的请求

91285f8880536a501f809eec738d4f66.png

评论请求

其中可以看到两个重要参数:pagenum 和 pagesize

将请求 copy 到 Postman 中进行测试

fa3799e142c583cf505f4d31c4db07eb.png

Postman测试

发现可以直接获取到数据

连 Header 都不需要添加

这里尝试对请求参数进行了精简

最终只需要如下几个参数即可

3e21bfa2de411a9f7aaf7406a58a5b2e.png

参数精简

从 Postman 中可以直接获取到对应的代码

import requests

url = "https://c.y.qq.com/base/fcgi-bin/fcg_global_comment_h5.fcg"

querystring = {"biztype":"1","topid":"237773700","cmd":"8","pagenum":"1","pagesize":"25"}

response = requests.request("GET", url, params=querystring)

print(response.text)

这里是单页评论的获取

所有评论的获取只需递增 pagenum 即可

2、数据解析

返回数据中有很多暂时不需要的字段

这里我们只取其中的用户名、评论时间、评论内容、点赞数

对应如下字段

{

"nick": "丨那壹刻永遠消失\"\"",

"praisenum": 1,

"rootcommentcontent": "越听越好听怎么回事!",

"time": 1568729836,

}

由于数据量较大 这里我们暂时将数据存放在 Excel 中

一来无须依赖外部数据库

二来可以使用 Excel 对数据进行二次处理

数据存储代码如下:

def file_do(list_info, file_name):

# 获取文件大小

if not os.path.exists(file_name):

wb = openpyxl.Workbook()

page = wb.active

page.title = 'jay'

page.append(['昵称','时间','点赞数','评论'])

else:

wb = openpyxl.load_workbook(file_name)

page = wb.active

for info in list_info:

try:

page.append(info)

except Exception:

print(info)

wb.save(filename=file_name)

二、数据可视化

1、各时段的评论数

首先我们对评论按小时区间进行汇总

由于时间粒度比较小,这里对时间粒度进行了一些处理

7069fdbc1fc4490a7472203c3afb2897.png

评价人数走势图

周董的新曲是在 9.16 号 23 点准时发布的

可以看出在发布后的一个小时内(23:00-24:00)

评论数量达到了高峰

占了总评论数的一半以上

另外看了一眼 9.16 23 点之前的评论也很有意思

c6956953ca5383f23d39d5ab6268f4f9.png

一种搬好小板凳嗑着瓜子坐等的既视感

2、大家都在说什么

词云生成的方法有很多

可以用代码生成

也可以用一些在线工具

这里我就使用了在线词云工具:wordart

后续可以给大家单独再普及一下

生成效果如下

b97012555a457f18efc59dc462d8dcf7.png

词云

周杰伦、杰伦字眼很明显

还有大量跑来『打卡』的

『好听』、『来了』、『哭了』、『爱了』

其中少不了的还有『青春』

另外『阿信』的出现估计给了很多人惊喜

3、大家都点赞了哪些评论

我们以点赞数对评论进行了排序

排名靠前的评论是如下一些

c216e47d8f5e75f522c6fdb62e2b581d.png

评论排名

另外,QQ 音乐官方也会放出精彩评论

4f308a571e3afd5c16837c956dd55a98.png

热心网友昀恺丶

841dc36536fe251f6b9a70593e725f56.png

凉城

292ea78e67a28472ca98317a66b7bda8.png

蜗牛..

对比下可以看出和我们获取到的数据是比较一致的

只不过官方并不是按点赞个数进行排名的

看得出来这些排名靠前的大都是在回忆青春

这些评论之所以能够得到大家的共鸣

也许他们的青春里都有一个周杰伦吧

三、附件

四、源码

1、评论爬取源码

import requests,json,time,uuid,os,openpyxl

import re

from openpyxl.cell.cell import ILLEGAL_CHARACTERS_RE

info_list = []

def get_comment_info():

global info_list

pagenum = 1

while(True):

print(pagenum)

url = "https://c.y.qq.com/base/fcgi-bin/fcg_global_comment_h5.fcg"

querystring = {"biztype":"1","topid":"237773700","cmd":"8","pagenum":pagenum,"pagesize":"25"}

response = requests.request("GET", url, params=querystring)

resp = json.loads(response.text)

commentlist = resp.get('comment').get('commentlist')

if not commentlist or len(commentlist) == 0:

return

for comment in commentlist:

info = []

one_name = comment.get('nick')

# 将 UNIX 时间戳转化为普通时间格式

if comment.get('time') < 1568735760:

return

time_local = time.localtime(comment.get('time'))

one_time = time.strftime("%Y-%m-%d %H:%M:%S", time_local)

one_praisenum = comment.get('praisenum')

one_comment = comment.get('rootcommentcontent')

ILLEGAL_CHARACTERS_RE.sub(r'', one_comment)

ILLEGAL_CHARACTERS_RE.sub(r'', one_name)

info = [one_name, one_time, one_praisenum, one_comment]

# print(info)

info_list.append(info)

pagenum += 1

# print(comment.get('nick'))

# print(comment.get('rootcommentcontent'))

# print(comment.get('time'))

# print(comment.get('praisenum'))

def file_do(file_name):

# 获取文件大小

if not os.path.exists(file_name):

wb = openpyxl.Workbook()

page = wb.active

page.title = 'jay'

page.append(['昵称','时间','点赞数','评论'])

else:

wb = openpyxl.load_workbook(file_name)

page = wb.active

for info in info_list:

try:

page.append(info)

except Exception:

print(info)

pass

continue

wb.save(filename=file_name)

if __name__ == "__main__":

file_name = str(uuid.uuid1()) + '.xlsx'

get_comment_info()

file_do(file_name)

print('data has saved in {}'.format(file_name))

2、生成HTML图表源码

# 导入Style类,用于定义样式风格

from pyecharts import Style

import json

# 导入Geo组件,用于生成柱状图

from pyecharts import Bar

# 导入Counter类,用于统计值出现的次数

from collections import Counter

import fileinput,re

# 设置全局主题风格

from pyecharts import configure

configure(global_theme='wonderland')

# 数据可视化

dates = []

comment_text = ""

def render():

global comment_text

with open('jay.csv', mode='r', encoding='utf-8') as f:

rows = f.readlines()

for row in rows[1:]:

if row.count(',') != 3:

continue

elements = row.split(',')

user = elements[0]

date = elements[1]

if '2019' not in date:

continue

like = elements[2]

comment = elements[3]

if '2019-09-14' in date:

dates.append('2019-09-14')

elif '2019-09-15' in date:

dates.append('2019-09-15')

elif '2019-09-16 0' in date or '2019-09-16 1' in date or '2019-09-16 20' in date or '2019-09-16 21' in date:

dates.append('2019-09-16 0-21')

elif '2019-09-18' in date:

continue

else:

dates.append(date)

comment_text += comment

with open("comment_text.txt","w", encoding='utf-8') as f:

f.write(comment_text)

date_data = Counter(dates).most_common()

# 按日期进行排序

date_data = sorted(date_data)

# print(data)

# 根据评分数据生成柱状图

bar = Bar('评价人数走势图', '数据来源:QQ音乐网页版',

title_pos='center', width=800, height=600)

attr, value = bar.cast(date_data)

bar.add('', attr, value, is_visualmap=False, visual_range=[0, 3500], visual_text_color='#fff', is_more_utils=True,

xaxis_interval=0, xaxis_rotate=30,is_label_show=True,xaxis_label_textsize=8, label_text_size=8)

bar.render(

'picture\评价人数走势图.html')

render()

最后,一起来听一下这首歌吧~

这篇关于为什么python如此火爆_用Python来分析一波周董新曲《说好不哭》为何如此火爆!...的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/366117

相关文章

基于Linux的ffmpeg python的关键帧抽取

《基于Linux的ffmpegpython的关键帧抽取》本文主要介绍了基于Linux的ffmpegpython的关键帧抽取,实现以按帧或时间间隔抽取关键帧,文中通过示例代码介绍的非常详细,对大家的学... 目录1.FFmpeg的环境配置1) 创建一个虚拟环境envjavascript2) ffmpeg-py

python使用库爬取m3u8文件的示例

《python使用库爬取m3u8文件的示例》本文主要介绍了python使用库爬取m3u8文件的示例,可以使用requests、m3u8、ffmpeg等库,实现获取、解析、下载视频片段并合并等步骤,具有... 目录一、准备工作二、获取m3u8文件内容三、解析m3u8文件四、下载视频片段五、合并视频片段六、错误

Python中提取文件名扩展名的多种方法实现

《Python中提取文件名扩展名的多种方法实现》在Python编程中,经常会遇到需要从文件名中提取扩展名的场景,Python提供了多种方法来实现这一功能,不同方法适用于不同的场景和需求,包括os.pa... 目录技术背景实现步骤方法一:使用os.path.splitext方法二:使用pathlib模块方法三

Python打印对象所有属性和值的方法小结

《Python打印对象所有属性和值的方法小结》在Python开发过程中,调试代码时经常需要查看对象的当前状态,也就是对象的所有属性和对应的值,然而,Python并没有像PHP的print_r那样直接提... 目录python中打印对象所有属性和值的方法实现步骤1. 使用vars()和pprint()2. 使

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

一文深入详解Python的secrets模块

《一文深入详解Python的secrets模块》在构建涉及用户身份认证、权限管理、加密通信等系统时,开发者最不能忽视的一个问题就是“安全性”,Python在3.6版本中引入了专门面向安全用途的secr... 目录引言一、背景与动机:为什么需要 secrets 模块?二、secrets 模块的核心功能1. 基

python常见环境管理工具超全解析

《python常见环境管理工具超全解析》在Python开发中,管理多个项目及其依赖项通常是一个挑战,下面:本文主要介绍python常见环境管理工具的相关资料,文中通过代码介绍的非常详细,需要的朋友... 目录1. conda2. pip3. uvuv 工具自动创建和管理环境的特点4. setup.py5.

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

Python UV安装、升级、卸载详细步骤记录

《PythonUV安装、升级、卸载详细步骤记录》:本文主要介绍PythonUV安装、升级、卸载的详细步骤,uv是Astral推出的下一代Python包与项目管理器,主打单一可执行文件、极致性能... 目录安装检查升级设置自动补全卸载UV 命令总结 官方文档详见:https://docs.astral.sh/

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.