为什么python如此火爆_用Python来分析一波周董新曲《说好不哭》为何如此火爆!...

2023-11-07 20:30

本文主要是介绍为什么python如此火爆_用Python来分析一波周董新曲《说好不哭》为何如此火爆!...,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

291758a0ea83da4aa7709e549a61f372.png

9 月 16 日晚间,周董在朋友圈发布了最新单曲《说好不哭》

发布后,真的让一波人哭了

一群想抢鲜听的小伙伴直接泪奔

因为 QQ 音乐直接被搞崩了

没想到干翻 QQ 音乐的不是网易云音乐

也不是虾米音乐

而是周董!

周董成成功地凭一己之力干翻了 QQ 音乐

那么听过周董新歌后的小伙伴都是怎么评价的呢?

这里,我们获取了 QQ 音乐的近 20W 条评论数据进行分析

看看其中有哪些有趣的东西

一、数据获取

1、请求分析

在 QQ 网页版直接搜索『说好不哭』

很容易就能找到单曲页面

70e4e81e348f186aacd2e72b1efb11d2.png

说好不哭

拉到页面最下方

可以看到评论的分页查看按钮

44850b4a5d4219ed71558d6b0defc148.png

分页查看

按下 F12 点击第二页

在请求流中就可以看到对应的请求

91285f8880536a501f809eec738d4f66.png

评论请求

其中可以看到两个重要参数:pagenum 和 pagesize

将请求 copy 到 Postman 中进行测试

fa3799e142c583cf505f4d31c4db07eb.png

Postman测试

发现可以直接获取到数据

连 Header 都不需要添加

这里尝试对请求参数进行了精简

最终只需要如下几个参数即可

3e21bfa2de411a9f7aaf7406a58a5b2e.png

参数精简

从 Postman 中可以直接获取到对应的代码

import requests

url = "https://c.y.qq.com/base/fcgi-bin/fcg_global_comment_h5.fcg"

querystring = {"biztype":"1","topid":"237773700","cmd":"8","pagenum":"1","pagesize":"25"}

response = requests.request("GET", url, params=querystring)

print(response.text)

这里是单页评论的获取

所有评论的获取只需递增 pagenum 即可

2、数据解析

返回数据中有很多暂时不需要的字段

这里我们只取其中的用户名、评论时间、评论内容、点赞数

对应如下字段

{

"nick": "丨那壹刻永遠消失\"\"",

"praisenum": 1,

"rootcommentcontent": "越听越好听怎么回事!",

"time": 1568729836,

}

由于数据量较大 这里我们暂时将数据存放在 Excel 中

一来无须依赖外部数据库

二来可以使用 Excel 对数据进行二次处理

数据存储代码如下:

def file_do(list_info, file_name):

# 获取文件大小

if not os.path.exists(file_name):

wb = openpyxl.Workbook()

page = wb.active

page.title = 'jay'

page.append(['昵称','时间','点赞数','评论'])

else:

wb = openpyxl.load_workbook(file_name)

page = wb.active

for info in list_info:

try:

page.append(info)

except Exception:

print(info)

wb.save(filename=file_name)

二、数据可视化

1、各时段的评论数

首先我们对评论按小时区间进行汇总

由于时间粒度比较小,这里对时间粒度进行了一些处理

7069fdbc1fc4490a7472203c3afb2897.png

评价人数走势图

周董的新曲是在 9.16 号 23 点准时发布的

可以看出在发布后的一个小时内(23:00-24:00)

评论数量达到了高峰

占了总评论数的一半以上

另外看了一眼 9.16 23 点之前的评论也很有意思

c6956953ca5383f23d39d5ab6268f4f9.png

一种搬好小板凳嗑着瓜子坐等的既视感

2、大家都在说什么

词云生成的方法有很多

可以用代码生成

也可以用一些在线工具

这里我就使用了在线词云工具:wordart

后续可以给大家单独再普及一下

生成效果如下

b97012555a457f18efc59dc462d8dcf7.png

词云

周杰伦、杰伦字眼很明显

还有大量跑来『打卡』的

『好听』、『来了』、『哭了』、『爱了』

其中少不了的还有『青春』

另外『阿信』的出现估计给了很多人惊喜

3、大家都点赞了哪些评论

我们以点赞数对评论进行了排序

排名靠前的评论是如下一些

c216e47d8f5e75f522c6fdb62e2b581d.png

评论排名

另外,QQ 音乐官方也会放出精彩评论

4f308a571e3afd5c16837c956dd55a98.png

热心网友昀恺丶

841dc36536fe251f6b9a70593e725f56.png

凉城

292ea78e67a28472ca98317a66b7bda8.png

蜗牛..

对比下可以看出和我们获取到的数据是比较一致的

只不过官方并不是按点赞个数进行排名的

看得出来这些排名靠前的大都是在回忆青春

这些评论之所以能够得到大家的共鸣

也许他们的青春里都有一个周杰伦吧

三、附件

四、源码

1、评论爬取源码

import requests,json,time,uuid,os,openpyxl

import re

from openpyxl.cell.cell import ILLEGAL_CHARACTERS_RE

info_list = []

def get_comment_info():

global info_list

pagenum = 1

while(True):

print(pagenum)

url = "https://c.y.qq.com/base/fcgi-bin/fcg_global_comment_h5.fcg"

querystring = {"biztype":"1","topid":"237773700","cmd":"8","pagenum":pagenum,"pagesize":"25"}

response = requests.request("GET", url, params=querystring)

resp = json.loads(response.text)

commentlist = resp.get('comment').get('commentlist')

if not commentlist or len(commentlist) == 0:

return

for comment in commentlist:

info = []

one_name = comment.get('nick')

# 将 UNIX 时间戳转化为普通时间格式

if comment.get('time') < 1568735760:

return

time_local = time.localtime(comment.get('time'))

one_time = time.strftime("%Y-%m-%d %H:%M:%S", time_local)

one_praisenum = comment.get('praisenum')

one_comment = comment.get('rootcommentcontent')

ILLEGAL_CHARACTERS_RE.sub(r'', one_comment)

ILLEGAL_CHARACTERS_RE.sub(r'', one_name)

info = [one_name, one_time, one_praisenum, one_comment]

# print(info)

info_list.append(info)

pagenum += 1

# print(comment.get('nick'))

# print(comment.get('rootcommentcontent'))

# print(comment.get('time'))

# print(comment.get('praisenum'))

def file_do(file_name):

# 获取文件大小

if not os.path.exists(file_name):

wb = openpyxl.Workbook()

page = wb.active

page.title = 'jay'

page.append(['昵称','时间','点赞数','评论'])

else:

wb = openpyxl.load_workbook(file_name)

page = wb.active

for info in info_list:

try:

page.append(info)

except Exception:

print(info)

pass

continue

wb.save(filename=file_name)

if __name__ == "__main__":

file_name = str(uuid.uuid1()) + '.xlsx'

get_comment_info()

file_do(file_name)

print('data has saved in {}'.format(file_name))

2、生成HTML图表源码

# 导入Style类,用于定义样式风格

from pyecharts import Style

import json

# 导入Geo组件,用于生成柱状图

from pyecharts import Bar

# 导入Counter类,用于统计值出现的次数

from collections import Counter

import fileinput,re

# 设置全局主题风格

from pyecharts import configure

configure(global_theme='wonderland')

# 数据可视化

dates = []

comment_text = ""

def render():

global comment_text

with open('jay.csv', mode='r', encoding='utf-8') as f:

rows = f.readlines()

for row in rows[1:]:

if row.count(',') != 3:

continue

elements = row.split(',')

user = elements[0]

date = elements[1]

if '2019' not in date:

continue

like = elements[2]

comment = elements[3]

if '2019-09-14' in date:

dates.append('2019-09-14')

elif '2019-09-15' in date:

dates.append('2019-09-15')

elif '2019-09-16 0' in date or '2019-09-16 1' in date or '2019-09-16 20' in date or '2019-09-16 21' in date:

dates.append('2019-09-16 0-21')

elif '2019-09-18' in date:

continue

else:

dates.append(date)

comment_text += comment

with open("comment_text.txt","w", encoding='utf-8') as f:

f.write(comment_text)

date_data = Counter(dates).most_common()

# 按日期进行排序

date_data = sorted(date_data)

# print(data)

# 根据评分数据生成柱状图

bar = Bar('评价人数走势图', '数据来源:QQ音乐网页版',

title_pos='center', width=800, height=600)

attr, value = bar.cast(date_data)

bar.add('', attr, value, is_visualmap=False, visual_range=[0, 3500], visual_text_color='#fff', is_more_utils=True,

xaxis_interval=0, xaxis_rotate=30,is_label_show=True,xaxis_label_textsize=8, label_text_size=8)

bar.render(

'picture\评价人数走势图.html')

render()

最后,一起来听一下这首歌吧~

这篇关于为什么python如此火爆_用Python来分析一波周董新曲《说好不哭》为何如此火爆!...的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/366117

相关文章

慢sql提前分析预警和动态sql替换-Mybatis-SQL

《慢sql提前分析预警和动态sql替换-Mybatis-SQL》为防止慢SQL问题而开发的MyBatis组件,该组件能够在开发、测试阶段自动分析SQL语句,并在出现慢SQL问题时通过Ducc配置实现动... 目录背景解决思路开源方案调研设计方案详细设计使用方法1、引入依赖jar包2、配置组件XML3、核心配

Python开发文字版随机事件游戏的项目实例

《Python开发文字版随机事件游戏的项目实例》随机事件游戏是一种通过生成不可预测的事件来增强游戏体验的类型,在这篇博文中,我们将使用Python开发一款文字版随机事件游戏,通过这个项目,读者不仅能够... 目录项目概述2.1 游戏概念2.2 游戏特色2.3 目标玩家群体技术选择与环境准备3.1 开发环境3

Java NoClassDefFoundError运行时错误分析解决

《JavaNoClassDefFoundError运行时错误分析解决》在Java开发中,NoClassDefFoundError是一种常见的运行时错误,它通常表明Java虚拟机在尝试加载一个类时未能... 目录前言一、问题分析二、报错原因三、解决思路检查类路径配置检查依赖库检查类文件调试类加载器问题四、常见

Python中模块graphviz使用入门

《Python中模块graphviz使用入门》graphviz是一个用于创建和操作图形的Python库,本文主要介绍了Python中模块graphviz使用入门,具有一定的参考价值,感兴趣的可以了解一... 目录1.安装2. 基本用法2.1 输出图像格式2.2 图像style设置2.3 属性2.4 子图和聚

Python使用Matplotlib绘制3D曲面图详解

《Python使用Matplotlib绘制3D曲面图详解》:本文主要介绍Python使用Matplotlib绘制3D曲面图,在Python中,使用Matplotlib库绘制3D曲面图可以通过mpl... 目录准备工作绘制简单的 3D 曲面图绘制 3D 曲面图添加线框和透明度控制图形视角Matplotlib

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

基于Python打造一个智能单词管理神器

《基于Python打造一个智能单词管理神器》这篇文章主要为大家详细介绍了如何使用Python打造一个智能单词管理神器,从查询到导出的一站式解决,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 项目概述:为什么需要这个工具2. 环境搭建与快速入门2.1 环境要求2.2 首次运行配置3. 核心功能使用指

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句