2.9-tf2-数据增强-tf_flowers

2023-11-07 19:51
文章标签 数据 tf 2.9 增强 flowers tf2

本文主要是介绍2.9-tf2-数据增强-tf_flowers,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 1.导入包
    • 2.加载数据
    • 3.数据预处理
    • 4.数据增强
    • 5.预处理层的两种方法
    • 6.把与处理层用在数据集上
    • 7.训练模型
    • 8.自定义数据增强
    • 9.Using tf.image

tf_flowers数据集
在这里插入图片描述

1.导入包

import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
import tensorflow_datasets as tfdsfrom tensorflow.keras import layers
from tensorflow.keras.datasets import mnist

2.加载数据

(train_ds, val_ds, test_ds), metadata = tfds.load('tf_flowers',split=['train[:80%]', 'train[80%:90%]', 'train[90%:]'],with_info=True,as_supervised=True,
)
#The flowers dataset has five classes.num_classes = metadata.features['label'].num_classes
print(num_classes)
5

复现数据:

#Let's retrieve an image from the dataset and use it to demonstrate data augmentation.get_label_name = metadata.features['label'].int2strimage, label = next(iter(train_ds))
_ = plt.imshow(image)
_ = plt.title(get_label_name(label))

在这里插入图片描述

3.数据预处理

Use Keras preprocessing layers

#Resizing and rescaling
#You can use preprocessing layers to resize your images to a consistent shape, and to rescale pixel values.IMG_SIZE = 180resize_and_rescale = tf.keras.Sequential([layers.experimental.preprocessing.Resizing(IMG_SIZE, IMG_SIZE),layers.experimental.preprocessing.Rescaling(1./255)
])
#Note: the rescaling layer above standardizes pixel values to [0,1]. If instead you wanted [-1,1], you would write Rescaling(1./127.5, offset=-1).
result = resize_and_rescale(image)
_ = plt.imshow(result)

在这里插入图片描述

#You can verify the pixels are in [0-1].print("Min and max pixel values:", result.numpy().min(), result.numpy().max())
Min and max pixel values: 0.0 1.0

4.数据增强

#Data augmentation
#You can use preprocessing layers for data augmentation as well.#Let's create a few preprocessing layers and apply them repeatedly to the same image.data_augmentation = tf.keras.Sequential([layers.experimental.preprocessing.RandomFlip("horizontal_and_vertical"),layers.experimental.preprocessing.RandomRotation(0.2),
])
# Add the image to a batch
image = tf.expand_dims(image, 0)
plt.figure(figsize=(10, 10))
for i in range(9):augmented_image = data_augmentation(image)ax = plt.subplot(3, 3, i + 1)plt.imshow(augmented_image[0])plt.axis("off")

在这里插入图片描述

#There are a variety of preprocessing layers you can use for data augmentation including layers.RandomContrast, layers.RandomCrop, layers.RandomZoom, and others.

5.预处理层的两种方法

There are two ways you can use these preprocessing layers, with important tradeoffs.

  1. 第一种方法
Option 1: Make the preprocessing layers part of your model
model = tf.keras.Sequential([resize_and_rescale,data_augmentation,layers.Conv2D(16, 3, padding='same', activation='relu'),layers.MaxPooling2D(),# Rest of your model
])
There are two important points to be aware of in this case:Data augmentation will run on-device, synchronously with the rest of your layers, and benefit from GPU acceleration.When you export your model using model.save, the preprocessing layers will be saved along with the rest of your model. If you later deploy this model, it will automatically standardize images (according to the configuration of your layers). This can save you from the effort of having to reimplement that logic server-side.Note: Data augmentation is inactive at test time so input images will only be augmented during calls to model.fit (not model.evaluate or model.predict).
  1. 第二种方法:
#Option 2: Apply the preprocessing layers to your dataset
aug_ds = train_ds.map(lambda x, y: (resize_and_rescale(x, training=True), y))
With this approach, you use Dataset.map to create a dataset that yields batches of augmented images. In this case:Data augmentation will happen asynchronously on the CPU, and is non-blocking. You can overlap the training of your model on the GPU with data preprocessing, using Dataset.prefetch, shown below.
In this case the prepreprocessing layers will not be exported with the model when you call model.save. You will need to attach them to your model before saving it or reimplement them server-side. After training, you can attach the preprocessing layers before export.

6.把与处理层用在数据集上

Configure the train, validation, and test datasets with the preprocessing layers you created above. You will also configure the datasets for performance, using parallel reads and buffered prefetching to yield batches from disk without I/O become blocking. 
Note: data augmentation should only be applied to the training set.
batch_size = 32
AUTOTUNE = tf.data.experimental.AUTOTUNEdef prepare(ds, shuffle=False, augment=False):# Resize and rescale all datasetsds = ds.map(lambda x, y: (resize_and_rescale(x), y), num_parallel_calls=AUTOTUNE)if shuffle:ds = ds.shuffle(1000)# Batch all datasetsds = ds.batch(batch_size)# Use data augmentation only on the training setif augment:ds = ds.map(lambda x, y: (data_augmentation(x, training=True), y), num_parallel_calls=AUTOTUNE)# Use buffered prefecting on all datasetsreturn ds.prefetch(buffer_size=AUTOTUNE)
train_ds = prepare(train_ds, shuffle=True, augment=True)
val_ds = prepare(val_ds)
test_ds = prepare(test_ds)

7.训练模型

model = tf.keras.Sequential([layers.Conv2D(16, 3, padding='same', activation='relu'),layers.MaxPooling2D(),layers.Conv2D(32, 3, padding='same', activation='relu'),layers.MaxPooling2D(),layers.Conv2D(64, 3, padding='same', activation='relu'),layers.MaxPooling2D(),layers.Flatten(),layers.Dense(128, activation='relu'),layers.Dense(num_classes)
])
model.compile(optimizer='adam',loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),metrics=['accuracy'])
epochs=5
history = model.fit(train_ds,validation_data=val_ds,epochs=epochs
)
Epoch 1/5
92/92 [==============================] - 30s 315ms/step - loss: 1.5078 - accuracy: 0.3428 - val_loss: 1.0809 - val_accuracy: 0.6240
Epoch 2/5
92/92 [==============================] - 28s 303ms/step - loss: 1.0781 - accuracy: 0.5724 - val_loss: 0.9762 - val_accuracy: 0.6322
Epoch 3/5
92/92 [==============================] - 28s 295ms/step - loss: 1.0083 - accuracy: 0.5900 - val_loss: 0.9570 - val_accuracy: 0.6376
Epoch 4/5
92/92 [==============================] - 28s 300ms/step - loss: 0.9537 - accuracy: 0.6116 - val_loss: 0.9081 - val_accuracy: 0.6485
Epoch 5/5
92/92 [==============================] - 28s 301ms/step - loss: 0.8816 - accuracy: 0.6525 - val_loss: 0.8353 - val_accuracy: 0.6594
loss, acc = model.evaluate(test_ds)
print("Accuracy", acc)
12/12 [==============================] - 1s 83ms/step - loss: 0.8226 - accuracy: 0.6567
Accuracy 0.6566757559776306

8.自定义数据增强

First, you will create a layers.Lambda layer. This is a good way to write concise code. Next, you will write a new layer via subclassing, which gives you more control. Both layers will randomly invert the colors in an image, accoring to some probability.
def random_invert_img(x, p=0.5):if  tf.random.uniform([]) < p:x = (255-x)else:xreturn xdef random_invert(factor=0.5):return layers.Lambda(lambda x: random_invert_img(x, factor))random_invert = random_invert()plt.figure(figsize=(10, 10))
for i in range(9):augmented_image = random_invert(image)ax = plt.subplot(3, 3, i + 1)plt.imshow(augmented_image[0].numpy().astype("uint8"))plt.axis("off")

在这里插入图片描述

#Next, implement a custom layer by subclassing.class RandomInvert(layers.Layer):def __init__(self, factor=0.5, **kwargs):super().__init__(**kwargs)self.factor = factordef call(self, x):return random_invert_img(x)_ = plt.imshow(RandomInvert()(image)[0])

在这里插入图片描述

9.Using tf.image

Since the flowers dataset was previously configured with data augmentation, let's reimport it to start fresh.(train_ds, val_ds, test_ds), metadata = tfds.load('tf_flowers',split=['train[:80%]', 'train[80%:90%]', 'train[90%:]'],with_info=True,as_supervised=True,
)
#Retrieve an image to work with.image, label = next(iter(train_ds))
_ = plt.imshow(image)
_ = plt.title(get_label_name(label))

在这里插入图片描述

Let's use the following function to visualize and compare the original and augmented images side-by-side.def visualize(original, augmented):fig = plt.figure()plt.subplot(1,2,1)plt.title('Original image')plt.imshow(original)plt.subplot(1,2,2)plt.title('Augmented image')plt.imshow(augmented)
#Data augmentation
#Flipping the image
3Flip the image either vertically or horizontally.flipped = tf.image.flip_left_right(image)
visualize(image, flipped)

在这里插入图片描述

#Grayscale an image.grayscaled = tf.image.rgb_to_grayscale(image)
visualize(image, tf.squeeze(grayscaled))
_ = plt.colorbar()

在这里插入图片描述

#Saturate an image by providing a saturation factor.saturated = tf.image.adjust_saturation(image, 3)
visualize(image, saturated)

在这里插入图片描述

#Change image brightness
#Change the brightness of image by providing a brightness factor.bright = tf.image.adjust_brightness(image, 0.4)
visualize(image, bright)

在这里插入图片描述

#Center crop the image
#Crop the image from center up to the image part you desire.cropped = tf.image.central_crop(image, central_fraction=0.5)
visualize(image,cropped)

在这里插入图片描述

#Rotate the image
#Rotate an image by 90 degrees.rotated = tf.image.rot90(image)
visualize(image, rotated)

在这里插入图片描述

#Apply augmentation to a dataset
#As before, apply data augmentation to a dataset using Dataset.map.def resize_and_rescale(image, label):image = tf.cast(image, tf.float32)image = tf.image.resize(image, [IMG_SIZE, IMG_SIZE])image = (image / 255.0)return image, labeldef augment(image,label):image, label = resize_and_rescale(image, label)# Add 6 pixels of paddingimage = tf.image.resize_with_crop_or_pad(image, IMG_SIZE + 6, IMG_SIZE + 6) # Random crop back to the original sizeimage = tf.image.random_crop(image, size=[IMG_SIZE, IMG_SIZE, 3])image = tf.image.random_brightness(image, max_delta=0.5) # Random brightnessimage = tf.clip_by_value(image, 0, 1)return image, label
#Configure the datasets
train_ds = (train_ds.shuffle(1000).map(augment, num_parallel_calls=AUTOTUNE).batch(batch_size).prefetch(AUTOTUNE)
) val_ds = (val_ds.map(resize_and_rescale, num_parallel_calls=AUTOTUNE).batch(batch_size).prefetch(AUTOTUNE)
)test_ds = (test_ds.map(resize_and_rescale, num_parallel_calls=AUTOTUNE).batch(batch_size).prefetch(AUTOTUNE)
)#These datasets can now be used to train a model as shown previously.

这篇关于2.9-tf2-数据增强-tf_flowers的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/365916

相关文章

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Pandas统计每行数据中的空值的方法示例

《Pandas统计每行数据中的空值的方法示例》处理缺失数据(NaN值)是一个非常常见的问题,本文主要介绍了Pandas统计每行数据中的空值的方法示例,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是空值?为什么要统计空值?准备工作创建示例数据统计每行空值数量进一步分析www.chinasem.cn处

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

Spring 请求之传递 JSON 数据的操作方法

《Spring请求之传递JSON数据的操作方法》JSON就是一种数据格式,有自己的格式和语法,使用文本表示一个对象或数组的信息,因此JSON本质是字符串,主要负责在不同的语言中数据传递和交换,这... 目录jsON 概念JSON 语法JSON 的语法JSON 的两种结构JSON 字符串和 Java 对象互转

C++如何通过Qt反射机制实现数据类序列化

《C++如何通过Qt反射机制实现数据类序列化》在C++工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作,所以本文就来聊聊C++如何通过Qt反射机制实现数据类序列化吧... 目录设计预期设计思路代码实现使用方法在 C++ 工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作。由于数据类

SpringBoot使用GZIP压缩反回数据问题

《SpringBoot使用GZIP压缩反回数据问题》:本文主要介绍SpringBoot使用GZIP压缩反回数据问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录SpringBoot使用GZIP压缩反回数据1、初识gzip2、gzip是什么,可以干什么?3、Spr