SparkContext 源码分析

2023-11-07 19:20
文章标签 分析 源码 sparkcontext

本文主要是介绍SparkContext 源码分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

SparkContext 源码分析

更多资源

  • github: https://github.com/opensourceteams/spark-scala-maven
  • csdn(汇总视频在线看): https://blog.csdn.net/thinktothings/article/details/84726769

Youtub 视频分享

  • Youtub视频(Spark原理分析图解): https://youtu.be/euIuutjAB4I
  • Youtub视频(Spark源码分析详解): https://youtu.be/tUH7QnCcwgg

bilibili 视频分享

  • bilibili视频(Spark原理分析图解): https://youtu.be/euIuutjAB4I
  • bilibili视频(Spark源码分析详解): https://www.bilibili.com/video/av37442161/
src="//player.bilibili.com/player.html?aid=37442161&page=1" scrolling="no" border="0" allowfullscreen="true">

文档说明

Main entry point for Spark functionality.A SparkContext represents the connection to a Spark cluster, and can be used to create RDDs, accumulators and broadcast variables on that cluster.Only one SparkContext may be active per JVM. You must stop() the active SparkContext before creating a new one. This limitation may eventually be removed; see SPARK-2243 for more details.

翻译

).Spark功能主要入口点
).一个SparkContext表示与一个Spark集群的连接
).在Spark集群上,能创建RDDs,累加器,广播变量
).每个JVM仅仅只有一个SparkContext可能是活动的
).在创建一个新的SparkContext之前,你必须停掉活动的SparkContext,这个限制最终可能被 移除,看SPARK-2243 更多详情

SparkContext原理图

SparkContext原理图

xmind文件下载

https://github.com/opensourceteams/spark-scala-maven/blob/master/md/images/spark/SparkContext.xmind

配置信息

可配置信息

  • spark.jars = jar文件路径(可迭代的)
  • spark.files = 文件路径
  • spark.eventLog.dir=/tmp/spark-events // 事件日志目录
  • spark.eventLog.compress=false //事件日志是否压缩
  • spark.shuffle.manager=sort //指定shuffler manager
// Let the user specify short names for shuffle managersval shortShuffleMgrNames = Map("hash" -> "org.apache.spark.shuffle.hash.HashShuffleManager","sort" -> "org.apache.spark.shuffle.sort.SortShuffleManager","tungsten-sort" -> "org.apache.spark.shuffle.sort.SortShuffleManager")val shuffleMgrName = conf.get("spark.shuffle.manager", "sort")val shuffleMgrClass = shortShuffleMgrNames.getOrElse(shuffleMgrName.toLowerCase, shuffleMgrName)val shuffleManager = instantiateClass[ShuffleManager](shuffleMgrClass)
  • spark.memory.useLegacyMode=true //指定内存管理器
      val useLegacyMemoryManager = conf.getBoolean("spark.memory.useLegacyMode", true)val memoryManager: MemoryManager =if (useLegacyMemoryManager) {new StaticMemoryManager(conf, numUsableCores)} else {UnifiedMemoryManager(conf, numUsableCores)}
    
- spark.ui.showConsoleProgress=true      //展示控制台的进度信息
- spark.ui.enabled=true      //是否开启SparkUI
- spark.executor.memory=      //spark executor 的内存
- SPARK_EXECUTOR_MEMORY=  //spark executor 的内存
- SPARK_MEM=  //spark executor 的内存```scala/***查找顺序,找到前面的就不找后面的了(配置文件中设置值单位为 byte),默认值为1024MBspark.executor.memory  >  SPARK_EXECUTOR_MEMORY >  SPARK_MEM*/_executorMemory = _conf.getOption("spark.executor.memory").orElse(Option(System.getenv("SPARK_EXECUTOR_MEMORY"))).orElse(Option(System.getenv("SPARK_MEM")).map(warnSparkMem)).map(Utils.memoryStringToMb).getOrElse(1024)
  • spark.scheduler.mode=FIFO //TaskSchedulerImpl 调度模式,可选(FIFO,FAIR,NONE)
/**
*  "FAIR" and "FIFO" determines which policy is used
*    to order tasks amongst a Schedulable's sub-queues
*  "NONE" is used when the a Schedulable has no sub-queues.
*/
object SchedulingMode extends Enumeration {type SchedulingMode = Valueval FAIR, FIFO, NONE = Value
}
  • spark.cores.max=2 设置executor占用cpu内核个数

  • spark.executor.extraJavaOptions= //设置executor启动执行的java参数

  • spark.executor.extraClassPath= //设置 executor 执行的classpath

  • spark.executor.extraLibraryPath= //设置 executor LibraryPath

  • spark.executor.cores= //executor core 个数分配

  • spark.rpc.lookupTimeout=“120s” //设置 RPCTimeout超时时间

  • spark.network.timeout=“120s” //设置 RPCTimeout超时时间

 /** Returns the default Spark timeout to use for RPC remote endpoint lookup. */private[spark] def lookupRpcTimeout(conf: SparkConf): RpcTimeout = {RpcTimeout(conf, Seq("spark.rpc.lookupTimeout", "spark.network.timeout"), "120s")}

Spark系统设置配置信息

  • spark.driver.host = Utils.localHostName()
  • spark.driver.port = 0
  • spark.executor.id = driver

主要内容

创建作业进度监听器

 _jobProgressListener = new JobProgressListener(_conf)listenerBus.addListener(jobProgressListener)

创建SparkEnv

_env = createSparkEnv(_conf, isLocal, listenerBus)
SparkEnv.set(_env)
  • 创建DriverEnv
 SparkEnv.createDriverEnv(conf, isLocal, listenerBus, SparkContext.numDriverCores(master))
  • 指定默认的 spark.rpc = org.apache.spark.rpc.netty.NettyRpcEnvFactory
  private def getRpcEnvFactory(conf: SparkConf): RpcEnvFactory = {val rpcEnvNames = Map("akka" -> "org.apache.spark.rpc.akka.AkkaRpcEnvFactory","netty" -> "org.apache.spark.rpc.netty.NettyRpcEnvFactory")val rpcEnvName = conf.get("spark.rpc", "netty")val rpcEnvFactoryClassName = rpcEnvNames.getOrElse(rpcEnvName.toLowerCase, rpcEnvName)Utils.classForName(rpcEnvFactoryClassName).newInstance().asInstanceOf[RpcEnvFactory]}
  • 创建NettyRpcEnv并启动,此时启动 ‘sparkDriver’
def create(config: RpcEnvConfig): RpcEnv = {val sparkConf = config.conf// Use JavaSerializerInstance in multiple threads is safe. However, if we plan to support// KryoSerializer in future, we have to use ThreadLocal to store SerializerInstanceval javaSerializerInstance =new JavaSerializer(sparkConf).newInstance().asInstanceOf[JavaSerializerInstance]val nettyEnv =new NettyRpcEnv(sparkConf, javaSerializerInstance, config.host, config.securityManager)if (!config.clientMode) {val startNettyRpcEnv: Int => (NettyRpcEnv, Int) = { actualPort =>nettyEnv.startServer(actualPort)(nettyEnv, nettyEnv.address.port)}try {Utils.startServiceOnPort(config.port, startNettyRpcEnv, sparkConf, config.name)._1} catch {case NonFatal(e) =>nettyEnv.shutdown()throw e}}nettyEnv}
  • 创建ActorSystem并启动,此时启动 ‘sparkDriverActorSystem’
 /*** Creates an ActorSystem ready for remoting, with various Spark features. Returns both the* ActorSystem itself and its port (which is hard to get from Akka).** Note: the `name` parameter is important, as even if a client sends a message to right* host + port, if the system name is incorrect, Akka will drop the message.** If indestructible is set to true, the Actor System will continue running in the event* of a fatal exception. This is used by [[org.apache.spark.executor.Executor]].*/def createActorSystem(name: String,host: String,port: Int,conf: SparkConf,securityManager: SecurityManager): (ActorSystem, Int) = {val startService: Int => (ActorSystem, Int) = { actualPort =>doCreateActorSystem(name, host, actualPort, conf, securityManager)}Utils.startServiceOnPort(port, startService, conf, name)}
  • 指定spark序列化器: org.apache.spark.serializer.JavaSerializer

val serializer = instantiateClassFromConfSerializer
logDebug(s"Using serializer: ${serializer.getClass}")

val closureSerializer = instantiateClassFromConf[Serializer]("spark.closure.serializer", "org.apache.spark.serializer.JavaSerializer")

- 实例化 MapOutputTrackerMaster ```scalaval broadcastManager = new BroadcastManager(isDriver, conf, securityManager)val mapOutputTracker = if (isDriver) {new MapOutputTrackerMaster(conf, broadcastManager, isLocal)} else {new MapOutputTrackerWorker(conf)}
  • 注册 MapOutputTracker 到 NettyRpcEndpointRef(通信用 和map输出信息的追踪)
def registerRpcEndpoint(name: String, endpoint: RpcEndpoint): NettyRpcEndpointRef = {val addr = RpcEndpointAddress(nettyEnv.address, name)val endpointRef = new NettyRpcEndpointRef(nettyEnv.conf, addr, nettyEnv)synchronized {if (stopped) {throw new IllegalStateException("RpcEnv has been stopped")}if (endpoints.putIfAbsent(name, new EndpointData(name, endpoint, endpointRef)) != null) {throw new IllegalArgumentException(s"There is already an RpcEndpoint called $name")}val data = endpoints.get(name)endpointRefs.put(data.endpoint, data.ref)receivers.offer(data)  // for the OnStart message}endpointRef}
  • 实例化ShuflleManager
// Let the user specify short names for shuffle managersval shortShuffleMgrNames = Map("hash" -> "org.apache.spark.shuffle.hash.HashShuffleManager","sort" -> "org.apache.spark.shuffle.sort.SortShuffleManager","tungsten-sort" -> "org.apache.spark.shuffle.sort.SortShuffleManager")val shuffleMgrName = conf.get("spark.shuffle.manager", "sort")val shuffleMgrClass = shortShuffleMgrNames.getOrElse(shuffleMgrName.toLowerCase, shuffleMgrName)val shuffleManager = instantiateClass[ShuffleManager](shuffleMgrClass)
  • 实例化内存管理器

val useLegacyMemoryManager = conf.getBoolean(“spark.memory.useLegacyMode”, true)
val memoryManager: MemoryManager =
if (useLegacyMemoryManager) {
new StaticMemoryManager(conf, numUsableCores)
} else {
UnifiedMemoryManager(conf, numUsableCores)
}

- 注册 BlockManagerMaster  到 NettyRpcEndpointRef(通信用)```scalaval blockManagerMaster = new BlockManagerMaster(registerOrLookupEndpoint(BlockManagerMaster.DRIVER_ENDPOINT_NAME,new BlockManagerMasterEndpoint(rpcEnv, isLocal, conf, listenerBus)),conf, isDriver)
  • 缓存管理器 实例化BlockManager
   // NB: blockManager is not valid until initialize() is called later.val blockManager = new BlockManager(executorId, rpcEnv, blockManagerMaster,serializer, conf, memoryManager, mapOutputTracker, shuffleManager,blockTransferService, securityManager, numUsableCores)val cacheManager = new CacheManager(blockManager)
  • 创建测量系统
val metricsSystem = if (isDriver) {// Don't start metrics system right now for Driver.// We need to wait for the task scheduler to give us an app ID.// Then we can start the metrics system.MetricsSystem.createMetricsSystem("driver", conf, securityManager)} else {// We need to set the executor ID before the MetricsSystem is created because sources and// sinks specified in the metrics configuration file will want to incorporate this executor's// ID into the metrics they report.conf.set("spark.executor.id", executorId)val ms = MetricsSystem.createMetricsSystem("executor", conf, securityManager)ms.start()ms}
  • 创建临时目录,如果是分布式模式,这是一个executor的当前工作目录
 // Set the sparkFiles directory, used when downloading dependencies.  In local mode,// this is a temporary directory; in distributed mode, this is the executor's current working// directory.val sparkFilesDir: String = if (isDriver) {Utils.createTempDir(Utils.getLocalDir(conf), "userFiles").getAbsolutePath} else {"."}
  • 注册 OutputCommitCoordinator 到 NettyRpcEndpointRef(通信用)
val outputCommitCoordinator = mockOutputCommitCoordinator.getOrElse {new OutputCommitCoordinator(conf, isDriver)}val outputCommitCoordinatorRef = registerOrLookupEndpoint("OutputCommitCoordinator",new OutputCommitCoordinatorEndpoint(rpcEnv, outputCommitCoordinator))outputCommitCoordinator.coordinatorRef = Some(outputCommitCoordinatorRef)
  • new SparkEnv 并返回
 val envInstance = new SparkEnv(executorId,rpcEnv,actorSystem,serializer,closureSerializer,cacheManager,mapOutputTracker,shuffleManager,broadcastManager,blockTransferService,blockManager,securityManager,sparkFilesDir,metricsSystem,memoryManager,outputCommitCoordinator,conf)// Add a reference to tmp dir created by driver, we will delete this tmp dir when stop() is// called, and we only need to do it for driver. Because driver may run as a service, and if we// don't delete this tmp dir when sc is stopped, then will create too many tmp dirs.if (isDriver) {envInstance.driverTmpDirToDelete = Some(sparkFilesDir)}envInstance

创建SparkUI

   _ui =if (conf.getBoolean("spark.ui.enabled", true)) {Some(SparkUI.createLiveUI(this, _conf, listenerBus, _jobProgressListener,_env.securityManager, appName, startTime = startTime))} else {// For tests, do not enable the UINone}// Bind the UI before starting the task scheduler to communicate// the bound port to the cluster manager properly_ui.foreach(_.bind())

注册心跳接收器

   // We need to register "HeartbeatReceiver" before "createTaskScheduler" because Executor will// retrieve "HeartbeatReceiver" in the constructor. (SPARK-6640)_heartbeatReceiver = env.rpcEnv.setupEndpoint(HeartbeatReceiver.ENDPOINT_NAME, new HeartbeatReceiver(this))

创建和启动调度器(TaskScheduler,DAGScheduler)

   // Create and start the schedulerval (sched, ts) = SparkContext.createTaskScheduler(this, master)_schedulerBackend = sched_taskScheduler = ts_dagScheduler = new DAGScheduler(this)_heartbeatReceiver.ask[Boolean](TaskSchedulerIsSet)// start TaskScheduler after taskScheduler sets DAGScheduler reference in DAGScheduler's// constructor_taskScheduler.start()
  • org.apache.spark.scheduler.TaskSchedulerImpl 文档说明
/**
).SchedulerBackend 对多种类型的集群调度任务
).LocalBackend 设置  isLocal为true, 也能调度本地任务
).SchedulerBackend.处理常用逻辑,决定跨作业的调度顺序,唤醒和启动推测的任务
).客户端应该先调用  initialize() 和  start(),然后通过 runTasks方法提交任务集* Schedules tasks for multiple types of clusters by acting through a SchedulerBackend.* It can also work with a local setup by using a LocalBackend and setting isLocal to true.* It handles common logic, like determining a scheduling order across jobs, waking up to launch* speculative tasks, etc.** Clients should first call initialize() and start(), then submit task sets through the* runTasks method.** THREADING: SchedulerBackends and task-submitting clients can call this class from multiple* threads, so it needs locks in public API methods to maintain its state. In addition, some* SchedulerBackends synchronize on themselves when they want to send events here, and then* acquire a lock on us, so we need to make sure that we don't try to lock the backend while* we are holding a lock on ourselves.*/
  • Standalone模式创建TaskSchedulerImpl并初使化中指定 backend为SparkDeploySchedulerBackend
     case SPARK_REGEX(sparkUrl) =>val scheduler = new TaskSchedulerImpl(sc)val masterUrls = sparkUrl.split(",").map("spark://" + _)val backend = new SparkDeploySchedulerBackend(scheduler, sc, masterUrls)scheduler.initialize(backend)(backend, scheduler)
 def initialize(backend: SchedulerBackend) {this.backend = backend// temporarily set rootPool name to emptyrootPool = new Pool("", schedulingMode, 0, 0)schedulableBuilder = {schedulingMode match {case SchedulingMode.FIFO =>new FIFOSchedulableBuilder(rootPool)case SchedulingMode.FAIR =>new FairSchedulableBuilder(rootPool, conf)}}schedulableBuilder.buildPools()}

任务调度器启动

  • 任务调度器启动_taskScheduler.start()
// start TaskScheduler after taskScheduler sets DAGScheduler reference in DAGScheduler's// constructor_taskScheduler.start()
  • 调用SparkDeploySchedulerBackend start方法
  override def start() {backend.start()if (!isLocal && conf.getBoolean("spark.speculation", false)) {logInfo("Starting speculative execution thread")speculationScheduler.scheduleAtFixedRate(new Runnable {override def run(): Unit = Utils.tryOrStopSparkContext(sc) {checkSpeculatableTasks()}}, SPECULATION_INTERVAL_MS, SPECULATION_INTERVAL_MS, TimeUnit.MILLISECONDS)}}
  • 再调用CoarseGrainedSchedulerBackend 的start方法 registerRpcEndpoint
    注册(通信用) [CoarseGrainedScheduler]
  • 实例化ApplicationDescription 包含 command (org.apache.spark.executor.CoarseGrainedExecutorBackend)
  • 启动 AppClient registerRpcEndpoint 注册(通信用)[AppClient]
override def start() {super.start()launcherBackend.connect()// The endpoint for executors to talk to usval driverUrl = rpcEnv.uriOf(SparkEnv.driverActorSystemName,RpcAddress(sc.conf.get("spark.driver.host"), sc.conf.get("spark.driver.port").toInt),CoarseGrainedSchedulerBackend.ENDPOINT_NAME)val args = Seq("--driver-url", driverUrl,"--executor-id", "{{EXECUTOR_ID}}","--hostname", "{{HOSTNAME}}","--cores", "{{CORES}}","--app-id", "{{APP_ID}}","--worker-url", "{{WORKER_URL}}")val extraJavaOpts = sc.conf.getOption("spark.executor.extraJavaOptions").map(Utils.splitCommandString).getOrElse(Seq.empty)val classPathEntries = sc.conf.getOption("spark.executor.extraClassPath").map(_.split(java.io.File.pathSeparator).toSeq).getOrElse(Nil)val libraryPathEntries = sc.conf.getOption("spark.executor.extraLibraryPath").map(_.split(java.io.File.pathSeparator).toSeq).getOrElse(Nil)// When testing, expose the parent class path to the child. This is processed by// compute-classpath.{cmd,sh} and makes all needed jars available to child processes// when the assembly is built with the "*-provided" profiles enabled.val testingClassPath =if (sys.props.contains("spark.testing")) {sys.props("java.class.path").split(java.io.File.pathSeparator).toSeq} else {Nil}// Start executors with a few necessary configs for registering with the schedulerval sparkJavaOpts = Utils.sparkJavaOpts(conf, SparkConf.isExecutorStartupConf)val javaOpts = sparkJavaOpts ++ extraJavaOptsval command = Command("org.apache.spark.executor.CoarseGrainedExecutorBackend",args, sc.executorEnvs, classPathEntries ++ testingClassPath, libraryPathEntries, javaOpts)val appUIAddress = sc.ui.map(_.appUIAddress).getOrElse("")val coresPerExecutor = conf.getOption("spark.executor.cores").map(_.toInt)val appDesc = new ApplicationDescription(sc.appName, maxCores, sc.executorMemory,command, appUIAddress, sc.eventLogDir, sc.eventLogCodec, coresPerExecutor)client = new AppClient(sc.env.rpcEnv, masters, appDesc, this, conf)client.start()launcherBackend.setState(SparkAppHandle.State.SUBMITTED)waitForRegistration()launcherBackend.setState(SparkAppHandle.State.RUNNING)}
  • CoarseGrainedSchedulerBackend 文档
/**
). 一个后端调度器 等待粗粒度 executors 通过 Akka连接他
).在Spark作业期间,这个后端调度接管着每个executor 比起交出executors给别人调度
).无论何时完成任务,都要求调度器启动一个新的executor给每个每个新的任务
).executors 可以以多种方式启动,例如 粗粒度 Mesos模式 Mesos任务
).或Spark standalone 部署模式的 standalone 处理* A scheduler backend that waits for coarse grained executors to connect to it through Akka.
* This backend holds onto each executor for the duration of the Spark job rather than relinquishing
* executors whenever a task is done and asking the scheduler to launch a new executor for
* each new task. Executors may be launched in a variety of ways, such as Mesos tasks for the
* coarse-grained Mesos mode or standalone processes for Spark's standalone deploy mode
* (spark.deploy.*).
*/
private[spark]
class CoarseGrainedSchedulerBackend(scheduler: TaskSchedulerImpl, val rpcEnv: RpcEnv)extends ExecutorAllocationClient with SchedulerBackend with Logging
{
  • 调用ClientEndpoint 的 onStart方法 异步向所有master注册,向master发送消息: RegisterApplication
override def onStart(): Unit = {try {registerWithMaster(1)} catch {case e: Exception =>logWarning("Failed to connect to master", e)markDisconnected()stop()}}
 /*** Register with all masters asynchronously. It will call `registerWithMaster` every* REGISTRATION_TIMEOUT_SECONDS seconds until exceeding REGISTRATION_RETRIES times.* Once we connect to a master successfully, all scheduling work and Futures will be cancelled.** nthRetry means this is the nth attempt to register with master.*/private def registerWithMaster(nthRetry: Int) {registerMasterFutures.set(tryRegisterAllMasters())registrationRetryTimer.set(registrationRetryThread.scheduleAtFixedRate(new Runnable {override def run(): Unit = {if (registered.get) {registerMasterFutures.get.foreach(_.cancel(true))registerMasterThreadPool.shutdownNow()} else if (nthRetry >= REGISTRATION_RETRIES) {markDead("All masters are unresponsive! Giving up.")} else {registerMasterFutures.get.foreach(_.cancel(true))registerWithMaster(nthRetry + 1)}}}, REGISTRATION_TIMEOUT_SECONDS, REGISTRATION_TIMEOUT_SECONDS, TimeUnit.SECONDS))}
   /***  Register with all masters asynchronously and returns an array `Future`s for cancellation.*/private def tryRegisterAllMasters(): Array[JFuture[_]] = {for (masterAddress <- masterRpcAddresses) yield {registerMasterThreadPool.submit(new Runnable {override def run(): Unit = try {if (registered.get) {return}logInfo("Connecting to master " + masterAddress.toSparkURL + "...")val masterRef =rpcEnv.setupEndpointRef(Master.SYSTEM_NAME, masterAddress, Master.ENDPOINT_NAME)masterRef.send(RegisterApplication(appDescription, self))} catch {case ie: InterruptedException => // Cancelledcase NonFatal(e) => logWarning(s"Failed to connect to master $masterAddress", e)}})}}

org.apache.spark.rpc.netty.Dispatcher

类文档说明
/**
一个消息分配器,负责将RPC消息路由到适当的端点
* A message dispatcher, responsible for routing RPC messages to the appropriate endpoint(s).
*/
private[netty] class Dispatcher(nettyEnv: NettyRpcEnv) extends Logging {
注册RPC端点 (关键通信及OnStart方法的调用)
/*** new EndpointData(name, endpoint, endpointRef) 的时候会进行 *  val inbox = new Inbox(ref, endpoint)的操作* Inbox 实例化时会进行如下操作,当相于首先增加OnStart消息// OnStart should be the first message to processinbox.synchronized {messages.add(OnStart)}*/
def registerRpcEndpoint(name: String, endpoint: RpcEndpoint): NettyRpcEndpointRef = {val addr = RpcEndpointAddress(nettyEnv.address, name)val endpointRef = new NettyRpcEndpointRef(nettyEnv.conf, addr, nettyEnv)synchronized {if (stopped) {throw new IllegalStateException("RpcEnv has been stopped")}if (endpoints.putIfAbsent(name, new EndpointData(name, endpoint, endpointRef)) != null) {throw new IllegalArgumentException(s"There is already an RpcEndpoint called $name")}val data = endpoints.get(name)endpointRefs.put(data.endpoint, data.ref)receivers.offer(data)  // for the OnStart message}endpointRef}
Inbox

A inbox that stores messages for an [[RpcEndpoint]] and posts messages to it thread-safely.

/**
* Inbox 实例化时会进行如下操作,当相于首先增加OnStart消息给当前的对象
(也就是每个RpcEndpoint 子类进行注册时,首先增加OnStart消息)
* OnStart消息在 process方法中会进行 endpoint实现类的onStart() 方法回调
*/// OnStart should be the first message to processinbox.synchronized {messages.add(OnStart)}
  /*** Process stored messages.*/def process(dispatcher: Dispatcher): Unit = {......
case OnStart =>endpoint.onStart()if (!endpoint.isInstanceOf[ThreadSafeRpcEndpoint]) {inbox.synchronized {if (!stopped) {enableConcurrent = true}}}

入口代码块 400行

try {_conf = config.clone()_conf.validateSettings()if (!_conf.contains("spark.master")) {throw new SparkException("A master URL must be set in your configuration")}if (!_conf.contains("spark.app.name")) {throw new SparkException("An application name must be set in your configuration")}// System property spark.yarn.app.id must be set if user code ran by AM on a YARN cluster// yarn-standalone is deprecated, but still supportedif ((master == "yarn-cluster" || master == "yarn-standalone") &&!_conf.contains("spark.yarn.app.id")) {throw new SparkException("Detected yarn-cluster mode, but isn't running on a cluster. " +"Deployment to YARN is not supported directly by SparkContext. Please use spark-submit.")}if (_conf.getBoolean("spark.logConf", false)) {logInfo("Spark configuration:\n" + _conf.toDebugString)}// Set Spark driver host and port system properties_conf.setIfMissing("spark.driver.host", Utils.localHostName())_conf.setIfMissing("spark.driver.port", "0")_conf.set("spark.executor.id", SparkContext.DRIVER_IDENTIFIER)_jars = _conf.getOption("spark.jars").map(_.split(",")).map(_.filter(_.size != 0)).toSeq.flatten_files = _conf.getOption("spark.files").map(_.split(",")).map(_.filter(_.size != 0)).toSeq.flatten_eventLogDir =if (isEventLogEnabled) {val unresolvedDir = conf.get("spark.eventLog.dir", EventLoggingListener.DEFAULT_LOG_DIR).stripSuffix("/")Some(Utils.resolveURI(unresolvedDir))} else {None}_eventLogCodec = {val compress = _conf.getBoolean("spark.eventLog.compress", false)if (compress && isEventLogEnabled) {Some(CompressionCodec.getCodecName(_conf)).map(CompressionCodec.getShortName)} else {None}}_conf.set("spark.externalBlockStore.folderName", externalBlockStoreFolderName)if (master == "yarn-client") System.setProperty("SPARK_YARN_MODE", "true")// "_jobProgressListener" should be set up before creating SparkEnv because when creating// "SparkEnv", some messages will be posted to "listenerBus" and we should not miss them._jobProgressListener = new JobProgressListener(_conf)listenerBus.addListener(jobProgressListener)// Create the Spark execution environment (cache, map output tracker, etc)_env = createSparkEnv(_conf, isLocal, listenerBus)SparkEnv.set(_env)// If running the REPL, register the repl's output dir with the file server._conf.getOption("spark.repl.class.outputDir").foreach { path =>val replUri = _env.rpcEnv.fileServer.addDirectory("/classes", new File(path))_conf.set("spark.repl.class.uri", replUri)}_metadataCleaner = new MetadataCleaner(MetadataCleanerType.SPARK_CONTEXT, this.cleanup, _conf)_statusTracker = new SparkStatusTracker(this)_progressBar =if (_conf.getBoolean("spark.ui.showConsoleProgress", true) && !log.isInfoEnabled) {Some(new ConsoleProgressBar(this))} else {None}_ui =if (conf.getBoolean("spark.ui.enabled", true)) {Some(SparkUI.createLiveUI(this, _conf, listenerBus, _jobProgressListener,_env.securityManager, appName, startTime = startTime))} else {// For tests, do not enable the UINone}// Bind the UI before starting the task scheduler to communicate// the bound port to the cluster manager properly_ui.foreach(_.bind())_hadoopConfiguration = SparkHadoopUtil.get.newConfiguration(_conf)// Add each JAR given through the constructorif (jars != null) {jars.foreach(addJar)}if (files != null) {files.foreach(addFile)}_executorMemory = _conf.getOption("spark.executor.memory").orElse(Option(System.getenv("SPARK_EXECUTOR_MEMORY"))).orElse(Option(System.getenv("SPARK_MEM")).map(warnSparkMem)).map(Utils.memoryStringToMb).getOrElse(1024)// Convert java options to env vars as a work around// since we can't set env vars directly in sbt.for { (envKey, propKey) <- Seq(("SPARK_TESTING", "spark.testing"))value <- Option(System.getenv(envKey)).orElse(Option(System.getProperty(propKey)))} {executorEnvs(envKey) = value}Option(System.getenv("SPARK_PREPEND_CLASSES")).foreach { v =>executorEnvs("SPARK_PREPEND_CLASSES") = v}// The Mesos scheduler backend relies on this environment variable to set executor memory.// TODO: Set this only in the Mesos scheduler.executorEnvs("SPARK_EXECUTOR_MEMORY") = executorMemory + "m"executorEnvs ++= _conf.getExecutorEnvexecutorEnvs("SPARK_USER") = sparkUser// We need to register "HeartbeatReceiver" before "createTaskScheduler" because Executor will// retrieve "HeartbeatReceiver" in the constructor. (SPARK-6640)_heartbeatReceiver = env.rpcEnv.setupEndpoint(HeartbeatReceiver.ENDPOINT_NAME, new HeartbeatReceiver(this))// Create and start the schedulerval (sched, ts) = SparkContext.createTaskScheduler(this, master)_schedulerBackend = sched_taskScheduler = ts_dagScheduler = new DAGScheduler(this)_heartbeatReceiver.ask[Boolean](TaskSchedulerIsSet)// start TaskScheduler after taskScheduler sets DAGScheduler reference in DAGScheduler's// constructor_taskScheduler.start()_applicationId = _taskScheduler.applicationId()_applicationAttemptId = taskScheduler.applicationAttemptId()_conf.set("spark.app.id", _applicationId)_ui.foreach(_.setAppId(_applicationId))_env.blockManager.initialize(_applicationId)// The metrics system for Driver need to be set spark.app.id to app ID.// So it should start after we get app ID from the task scheduler and set spark.app.id.metricsSystem.start()// Attach the driver metrics servlet handler to the web ui after the metrics system is started.metricsSystem.getServletHandlers.foreach(handler => ui.foreach(_.attachHandler(handler)))_eventLogger =if (isEventLogEnabled) {val logger =new EventLoggingListener(_applicationId, _applicationAttemptId, _eventLogDir.get,_conf, _hadoopConfiguration)logger.start()listenerBus.addListener(logger)Some(logger)} else {None}// Optionally scale number of executors dynamically based on workload. Exposed for testing.val dynamicAllocationEnabled = Utils.isDynamicAllocationEnabled(_conf)if (!dynamicAllocationEnabled && _conf.getBoolean("spark.dynamicAllocation.enabled", false)) {logWarning("Dynamic Allocation and num executors both set, thus dynamic allocation disabled.")}_executorAllocationManager =if (dynamicAllocationEnabled) {Some(new ExecutorAllocationManager(this, listenerBus, _conf))} else {None}_executorAllocationManager.foreach(_.start())_cleaner =if (_conf.getBoolean("spark.cleaner.referenceTracking", true)) {Some(new ContextCleaner(this))} else {None}_cleaner.foreach(_.start())setupAndStartListenerBus()postEnvironmentUpdate()postApplicationStart()// Post init_taskScheduler.postStartHook()_env.metricsSystem.registerSource(_dagScheduler.metricsSource)_env.metricsSystem.registerSource(new BlockManagerSource(_env.blockManager))_executorAllocationManager.foreach { e =>_env.metricsSystem.registerSource(e.executorAllocationManagerSource)}// Make sure the context is stopped if the user forgets about it. This avoids leaving// unfinished event logs around after the JVM exits cleanly. It doesn't help if the JVM// is killed, though._shutdownHookRef = ShutdownHookManager.addShutdownHook(ShutdownHookManager.SPARK_CONTEXT_SHUTDOWN_PRIORITY) { () =>logInfo("Invoking stop() from shutdown hook")stop()}} catch {case NonFatal(e) =>logError("Error initializing SparkContext.", e)try {stop()} catch {case NonFatal(inner) =>logError("Error stopping SparkContext after init error.", inner)} finally {throw e}}

这篇关于SparkContext 源码分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/365754

相关文章

Android 缓存日志Logcat导出与分析最佳实践

《Android缓存日志Logcat导出与分析最佳实践》本文全面介绍AndroidLogcat缓存日志的导出与分析方法,涵盖按进程、缓冲区类型及日志级别过滤,自动化工具使用,常见问题解决方案和最佳实... 目录android 缓存日志(Logcat)导出与分析全攻略为什么要导出缓存日志?按需过滤导出1. 按

Linux中的HTTPS协议原理分析

《Linux中的HTTPS协议原理分析》文章解释了HTTPS的必要性:HTTP明文传输易被篡改和劫持,HTTPS通过非对称加密协商对称密钥、CA证书认证和混合加密机制,有效防范中间人攻击,保障通信安全... 目录一、什么是加密和解密?二、为什么需要加密?三、常见的加密方式3.1 对称加密3.2非对称加密四、

MySQL中读写分离方案对比分析与选型建议

《MySQL中读写分离方案对比分析与选型建议》MySQL读写分离是提升数据库可用性和性能的常见手段,本文将围绕现实生产环境中常见的几种读写分离模式进行系统对比,希望对大家有所帮助... 目录一、问题背景介绍二、多种解决方案对比2.1 原生mysql主从复制2.2 Proxy层中间件:ProxySQL2.3

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

Olingo分析和实践之EDM 辅助序列化器详解(最佳实践)

《Olingo分析和实践之EDM辅助序列化器详解(最佳实践)》EDM辅助序列化器是ApacheOlingoOData框架中无需完整EDM模型的智能序列化工具,通过运行时类型推断实现灵活数据转换,适用... 目录概念与定义什么是 EDM 辅助序列化器?核心概念设计目标核心特点1. EDM 信息可选2. 智能类

Olingo分析和实践之OData框架核心组件初始化(关键步骤)

《Olingo分析和实践之OData框架核心组件初始化(关键步骤)》ODataSpringBootService通过初始化OData实例和服务元数据,构建框架核心能力与数据模型结构,实现序列化、URI... 目录概述第一步:OData实例创建1.1 OData.newInstance() 详细分析1.1.1