SparkContext 源码分析

2023-11-07 19:20
文章标签 分析 源码 sparkcontext

本文主要是介绍SparkContext 源码分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

SparkContext 源码分析

更多资源

  • github: https://github.com/opensourceteams/spark-scala-maven
  • csdn(汇总视频在线看): https://blog.csdn.net/thinktothings/article/details/84726769

Youtub 视频分享

  • Youtub视频(Spark原理分析图解): https://youtu.be/euIuutjAB4I
  • Youtub视频(Spark源码分析详解): https://youtu.be/tUH7QnCcwgg

bilibili 视频分享

  • bilibili视频(Spark原理分析图解): https://youtu.be/euIuutjAB4I
  • bilibili视频(Spark源码分析详解): https://www.bilibili.com/video/av37442161/
src="//player.bilibili.com/player.html?aid=37442161&page=1" scrolling="no" border="0" allowfullscreen="true">

文档说明

Main entry point for Spark functionality.A SparkContext represents the connection to a Spark cluster, and can be used to create RDDs, accumulators and broadcast variables on that cluster.Only one SparkContext may be active per JVM. You must stop() the active SparkContext before creating a new one. This limitation may eventually be removed; see SPARK-2243 for more details.

翻译

).Spark功能主要入口点
).一个SparkContext表示与一个Spark集群的连接
).在Spark集群上,能创建RDDs,累加器,广播变量
).每个JVM仅仅只有一个SparkContext可能是活动的
).在创建一个新的SparkContext之前,你必须停掉活动的SparkContext,这个限制最终可能被 移除,看SPARK-2243 更多详情

SparkContext原理图

SparkContext原理图

xmind文件下载

https://github.com/opensourceteams/spark-scala-maven/blob/master/md/images/spark/SparkContext.xmind

配置信息

可配置信息

  • spark.jars = jar文件路径(可迭代的)
  • spark.files = 文件路径
  • spark.eventLog.dir=/tmp/spark-events // 事件日志目录
  • spark.eventLog.compress=false //事件日志是否压缩
  • spark.shuffle.manager=sort //指定shuffler manager
// Let the user specify short names for shuffle managersval shortShuffleMgrNames = Map("hash" -> "org.apache.spark.shuffle.hash.HashShuffleManager","sort" -> "org.apache.spark.shuffle.sort.SortShuffleManager","tungsten-sort" -> "org.apache.spark.shuffle.sort.SortShuffleManager")val shuffleMgrName = conf.get("spark.shuffle.manager", "sort")val shuffleMgrClass = shortShuffleMgrNames.getOrElse(shuffleMgrName.toLowerCase, shuffleMgrName)val shuffleManager = instantiateClass[ShuffleManager](shuffleMgrClass)
  • spark.memory.useLegacyMode=true //指定内存管理器
      val useLegacyMemoryManager = conf.getBoolean("spark.memory.useLegacyMode", true)val memoryManager: MemoryManager =if (useLegacyMemoryManager) {new StaticMemoryManager(conf, numUsableCores)} else {UnifiedMemoryManager(conf, numUsableCores)}
    
- spark.ui.showConsoleProgress=true      //展示控制台的进度信息
- spark.ui.enabled=true      //是否开启SparkUI
- spark.executor.memory=      //spark executor 的内存
- SPARK_EXECUTOR_MEMORY=  //spark executor 的内存
- SPARK_MEM=  //spark executor 的内存```scala/***查找顺序,找到前面的就不找后面的了(配置文件中设置值单位为 byte),默认值为1024MBspark.executor.memory  >  SPARK_EXECUTOR_MEMORY >  SPARK_MEM*/_executorMemory = _conf.getOption("spark.executor.memory").orElse(Option(System.getenv("SPARK_EXECUTOR_MEMORY"))).orElse(Option(System.getenv("SPARK_MEM")).map(warnSparkMem)).map(Utils.memoryStringToMb).getOrElse(1024)
  • spark.scheduler.mode=FIFO //TaskSchedulerImpl 调度模式,可选(FIFO,FAIR,NONE)
/**
*  "FAIR" and "FIFO" determines which policy is used
*    to order tasks amongst a Schedulable's sub-queues
*  "NONE" is used when the a Schedulable has no sub-queues.
*/
object SchedulingMode extends Enumeration {type SchedulingMode = Valueval FAIR, FIFO, NONE = Value
}
  • spark.cores.max=2 设置executor占用cpu内核个数

  • spark.executor.extraJavaOptions= //设置executor启动执行的java参数

  • spark.executor.extraClassPath= //设置 executor 执行的classpath

  • spark.executor.extraLibraryPath= //设置 executor LibraryPath

  • spark.executor.cores= //executor core 个数分配

  • spark.rpc.lookupTimeout=“120s” //设置 RPCTimeout超时时间

  • spark.network.timeout=“120s” //设置 RPCTimeout超时时间

 /** Returns the default Spark timeout to use for RPC remote endpoint lookup. */private[spark] def lookupRpcTimeout(conf: SparkConf): RpcTimeout = {RpcTimeout(conf, Seq("spark.rpc.lookupTimeout", "spark.network.timeout"), "120s")}

Spark系统设置配置信息

  • spark.driver.host = Utils.localHostName()
  • spark.driver.port = 0
  • spark.executor.id = driver

主要内容

创建作业进度监听器

 _jobProgressListener = new JobProgressListener(_conf)listenerBus.addListener(jobProgressListener)

创建SparkEnv

_env = createSparkEnv(_conf, isLocal, listenerBus)
SparkEnv.set(_env)
  • 创建DriverEnv
 SparkEnv.createDriverEnv(conf, isLocal, listenerBus, SparkContext.numDriverCores(master))
  • 指定默认的 spark.rpc = org.apache.spark.rpc.netty.NettyRpcEnvFactory
  private def getRpcEnvFactory(conf: SparkConf): RpcEnvFactory = {val rpcEnvNames = Map("akka" -> "org.apache.spark.rpc.akka.AkkaRpcEnvFactory","netty" -> "org.apache.spark.rpc.netty.NettyRpcEnvFactory")val rpcEnvName = conf.get("spark.rpc", "netty")val rpcEnvFactoryClassName = rpcEnvNames.getOrElse(rpcEnvName.toLowerCase, rpcEnvName)Utils.classForName(rpcEnvFactoryClassName).newInstance().asInstanceOf[RpcEnvFactory]}
  • 创建NettyRpcEnv并启动,此时启动 ‘sparkDriver’
def create(config: RpcEnvConfig): RpcEnv = {val sparkConf = config.conf// Use JavaSerializerInstance in multiple threads is safe. However, if we plan to support// KryoSerializer in future, we have to use ThreadLocal to store SerializerInstanceval javaSerializerInstance =new JavaSerializer(sparkConf).newInstance().asInstanceOf[JavaSerializerInstance]val nettyEnv =new NettyRpcEnv(sparkConf, javaSerializerInstance, config.host, config.securityManager)if (!config.clientMode) {val startNettyRpcEnv: Int => (NettyRpcEnv, Int) = { actualPort =>nettyEnv.startServer(actualPort)(nettyEnv, nettyEnv.address.port)}try {Utils.startServiceOnPort(config.port, startNettyRpcEnv, sparkConf, config.name)._1} catch {case NonFatal(e) =>nettyEnv.shutdown()throw e}}nettyEnv}
  • 创建ActorSystem并启动,此时启动 ‘sparkDriverActorSystem’
 /*** Creates an ActorSystem ready for remoting, with various Spark features. Returns both the* ActorSystem itself and its port (which is hard to get from Akka).** Note: the `name` parameter is important, as even if a client sends a message to right* host + port, if the system name is incorrect, Akka will drop the message.** If indestructible is set to true, the Actor System will continue running in the event* of a fatal exception. This is used by [[org.apache.spark.executor.Executor]].*/def createActorSystem(name: String,host: String,port: Int,conf: SparkConf,securityManager: SecurityManager): (ActorSystem, Int) = {val startService: Int => (ActorSystem, Int) = { actualPort =>doCreateActorSystem(name, host, actualPort, conf, securityManager)}Utils.startServiceOnPort(port, startService, conf, name)}
  • 指定spark序列化器: org.apache.spark.serializer.JavaSerializer

val serializer = instantiateClassFromConfSerializer
logDebug(s"Using serializer: ${serializer.getClass}")

val closureSerializer = instantiateClassFromConf[Serializer]("spark.closure.serializer", "org.apache.spark.serializer.JavaSerializer")

- 实例化 MapOutputTrackerMaster ```scalaval broadcastManager = new BroadcastManager(isDriver, conf, securityManager)val mapOutputTracker = if (isDriver) {new MapOutputTrackerMaster(conf, broadcastManager, isLocal)} else {new MapOutputTrackerWorker(conf)}
  • 注册 MapOutputTracker 到 NettyRpcEndpointRef(通信用 和map输出信息的追踪)
def registerRpcEndpoint(name: String, endpoint: RpcEndpoint): NettyRpcEndpointRef = {val addr = RpcEndpointAddress(nettyEnv.address, name)val endpointRef = new NettyRpcEndpointRef(nettyEnv.conf, addr, nettyEnv)synchronized {if (stopped) {throw new IllegalStateException("RpcEnv has been stopped")}if (endpoints.putIfAbsent(name, new EndpointData(name, endpoint, endpointRef)) != null) {throw new IllegalArgumentException(s"There is already an RpcEndpoint called $name")}val data = endpoints.get(name)endpointRefs.put(data.endpoint, data.ref)receivers.offer(data)  // for the OnStart message}endpointRef}
  • 实例化ShuflleManager
// Let the user specify short names for shuffle managersval shortShuffleMgrNames = Map("hash" -> "org.apache.spark.shuffle.hash.HashShuffleManager","sort" -> "org.apache.spark.shuffle.sort.SortShuffleManager","tungsten-sort" -> "org.apache.spark.shuffle.sort.SortShuffleManager")val shuffleMgrName = conf.get("spark.shuffle.manager", "sort")val shuffleMgrClass = shortShuffleMgrNames.getOrElse(shuffleMgrName.toLowerCase, shuffleMgrName)val shuffleManager = instantiateClass[ShuffleManager](shuffleMgrClass)
  • 实例化内存管理器

val useLegacyMemoryManager = conf.getBoolean(“spark.memory.useLegacyMode”, true)
val memoryManager: MemoryManager =
if (useLegacyMemoryManager) {
new StaticMemoryManager(conf, numUsableCores)
} else {
UnifiedMemoryManager(conf, numUsableCores)
}

- 注册 BlockManagerMaster  到 NettyRpcEndpointRef(通信用)```scalaval blockManagerMaster = new BlockManagerMaster(registerOrLookupEndpoint(BlockManagerMaster.DRIVER_ENDPOINT_NAME,new BlockManagerMasterEndpoint(rpcEnv, isLocal, conf, listenerBus)),conf, isDriver)
  • 缓存管理器 实例化BlockManager
   // NB: blockManager is not valid until initialize() is called later.val blockManager = new BlockManager(executorId, rpcEnv, blockManagerMaster,serializer, conf, memoryManager, mapOutputTracker, shuffleManager,blockTransferService, securityManager, numUsableCores)val cacheManager = new CacheManager(blockManager)
  • 创建测量系统
val metricsSystem = if (isDriver) {// Don't start metrics system right now for Driver.// We need to wait for the task scheduler to give us an app ID.// Then we can start the metrics system.MetricsSystem.createMetricsSystem("driver", conf, securityManager)} else {// We need to set the executor ID before the MetricsSystem is created because sources and// sinks specified in the metrics configuration file will want to incorporate this executor's// ID into the metrics they report.conf.set("spark.executor.id", executorId)val ms = MetricsSystem.createMetricsSystem("executor", conf, securityManager)ms.start()ms}
  • 创建临时目录,如果是分布式模式,这是一个executor的当前工作目录
 // Set the sparkFiles directory, used when downloading dependencies.  In local mode,// this is a temporary directory; in distributed mode, this is the executor's current working// directory.val sparkFilesDir: String = if (isDriver) {Utils.createTempDir(Utils.getLocalDir(conf), "userFiles").getAbsolutePath} else {"."}
  • 注册 OutputCommitCoordinator 到 NettyRpcEndpointRef(通信用)
val outputCommitCoordinator = mockOutputCommitCoordinator.getOrElse {new OutputCommitCoordinator(conf, isDriver)}val outputCommitCoordinatorRef = registerOrLookupEndpoint("OutputCommitCoordinator",new OutputCommitCoordinatorEndpoint(rpcEnv, outputCommitCoordinator))outputCommitCoordinator.coordinatorRef = Some(outputCommitCoordinatorRef)
  • new SparkEnv 并返回
 val envInstance = new SparkEnv(executorId,rpcEnv,actorSystem,serializer,closureSerializer,cacheManager,mapOutputTracker,shuffleManager,broadcastManager,blockTransferService,blockManager,securityManager,sparkFilesDir,metricsSystem,memoryManager,outputCommitCoordinator,conf)// Add a reference to tmp dir created by driver, we will delete this tmp dir when stop() is// called, and we only need to do it for driver. Because driver may run as a service, and if we// don't delete this tmp dir when sc is stopped, then will create too many tmp dirs.if (isDriver) {envInstance.driverTmpDirToDelete = Some(sparkFilesDir)}envInstance

创建SparkUI

   _ui =if (conf.getBoolean("spark.ui.enabled", true)) {Some(SparkUI.createLiveUI(this, _conf, listenerBus, _jobProgressListener,_env.securityManager, appName, startTime = startTime))} else {// For tests, do not enable the UINone}// Bind the UI before starting the task scheduler to communicate// the bound port to the cluster manager properly_ui.foreach(_.bind())

注册心跳接收器

   // We need to register "HeartbeatReceiver" before "createTaskScheduler" because Executor will// retrieve "HeartbeatReceiver" in the constructor. (SPARK-6640)_heartbeatReceiver = env.rpcEnv.setupEndpoint(HeartbeatReceiver.ENDPOINT_NAME, new HeartbeatReceiver(this))

创建和启动调度器(TaskScheduler,DAGScheduler)

   // Create and start the schedulerval (sched, ts) = SparkContext.createTaskScheduler(this, master)_schedulerBackend = sched_taskScheduler = ts_dagScheduler = new DAGScheduler(this)_heartbeatReceiver.ask[Boolean](TaskSchedulerIsSet)// start TaskScheduler after taskScheduler sets DAGScheduler reference in DAGScheduler's// constructor_taskScheduler.start()
  • org.apache.spark.scheduler.TaskSchedulerImpl 文档说明
/**
).SchedulerBackend 对多种类型的集群调度任务
).LocalBackend 设置  isLocal为true, 也能调度本地任务
).SchedulerBackend.处理常用逻辑,决定跨作业的调度顺序,唤醒和启动推测的任务
).客户端应该先调用  initialize() 和  start(),然后通过 runTasks方法提交任务集* Schedules tasks for multiple types of clusters by acting through a SchedulerBackend.* It can also work with a local setup by using a LocalBackend and setting isLocal to true.* It handles common logic, like determining a scheduling order across jobs, waking up to launch* speculative tasks, etc.** Clients should first call initialize() and start(), then submit task sets through the* runTasks method.** THREADING: SchedulerBackends and task-submitting clients can call this class from multiple* threads, so it needs locks in public API methods to maintain its state. In addition, some* SchedulerBackends synchronize on themselves when they want to send events here, and then* acquire a lock on us, so we need to make sure that we don't try to lock the backend while* we are holding a lock on ourselves.*/
  • Standalone模式创建TaskSchedulerImpl并初使化中指定 backend为SparkDeploySchedulerBackend
     case SPARK_REGEX(sparkUrl) =>val scheduler = new TaskSchedulerImpl(sc)val masterUrls = sparkUrl.split(",").map("spark://" + _)val backend = new SparkDeploySchedulerBackend(scheduler, sc, masterUrls)scheduler.initialize(backend)(backend, scheduler)
 def initialize(backend: SchedulerBackend) {this.backend = backend// temporarily set rootPool name to emptyrootPool = new Pool("", schedulingMode, 0, 0)schedulableBuilder = {schedulingMode match {case SchedulingMode.FIFO =>new FIFOSchedulableBuilder(rootPool)case SchedulingMode.FAIR =>new FairSchedulableBuilder(rootPool, conf)}}schedulableBuilder.buildPools()}

任务调度器启动

  • 任务调度器启动_taskScheduler.start()
// start TaskScheduler after taskScheduler sets DAGScheduler reference in DAGScheduler's// constructor_taskScheduler.start()
  • 调用SparkDeploySchedulerBackend start方法
  override def start() {backend.start()if (!isLocal && conf.getBoolean("spark.speculation", false)) {logInfo("Starting speculative execution thread")speculationScheduler.scheduleAtFixedRate(new Runnable {override def run(): Unit = Utils.tryOrStopSparkContext(sc) {checkSpeculatableTasks()}}, SPECULATION_INTERVAL_MS, SPECULATION_INTERVAL_MS, TimeUnit.MILLISECONDS)}}
  • 再调用CoarseGrainedSchedulerBackend 的start方法 registerRpcEndpoint
    注册(通信用) [CoarseGrainedScheduler]
  • 实例化ApplicationDescription 包含 command (org.apache.spark.executor.CoarseGrainedExecutorBackend)
  • 启动 AppClient registerRpcEndpoint 注册(通信用)[AppClient]
override def start() {super.start()launcherBackend.connect()// The endpoint for executors to talk to usval driverUrl = rpcEnv.uriOf(SparkEnv.driverActorSystemName,RpcAddress(sc.conf.get("spark.driver.host"), sc.conf.get("spark.driver.port").toInt),CoarseGrainedSchedulerBackend.ENDPOINT_NAME)val args = Seq("--driver-url", driverUrl,"--executor-id", "{{EXECUTOR_ID}}","--hostname", "{{HOSTNAME}}","--cores", "{{CORES}}","--app-id", "{{APP_ID}}","--worker-url", "{{WORKER_URL}}")val extraJavaOpts = sc.conf.getOption("spark.executor.extraJavaOptions").map(Utils.splitCommandString).getOrElse(Seq.empty)val classPathEntries = sc.conf.getOption("spark.executor.extraClassPath").map(_.split(java.io.File.pathSeparator).toSeq).getOrElse(Nil)val libraryPathEntries = sc.conf.getOption("spark.executor.extraLibraryPath").map(_.split(java.io.File.pathSeparator).toSeq).getOrElse(Nil)// When testing, expose the parent class path to the child. This is processed by// compute-classpath.{cmd,sh} and makes all needed jars available to child processes// when the assembly is built with the "*-provided" profiles enabled.val testingClassPath =if (sys.props.contains("spark.testing")) {sys.props("java.class.path").split(java.io.File.pathSeparator).toSeq} else {Nil}// Start executors with a few necessary configs for registering with the schedulerval sparkJavaOpts = Utils.sparkJavaOpts(conf, SparkConf.isExecutorStartupConf)val javaOpts = sparkJavaOpts ++ extraJavaOptsval command = Command("org.apache.spark.executor.CoarseGrainedExecutorBackend",args, sc.executorEnvs, classPathEntries ++ testingClassPath, libraryPathEntries, javaOpts)val appUIAddress = sc.ui.map(_.appUIAddress).getOrElse("")val coresPerExecutor = conf.getOption("spark.executor.cores").map(_.toInt)val appDesc = new ApplicationDescription(sc.appName, maxCores, sc.executorMemory,command, appUIAddress, sc.eventLogDir, sc.eventLogCodec, coresPerExecutor)client = new AppClient(sc.env.rpcEnv, masters, appDesc, this, conf)client.start()launcherBackend.setState(SparkAppHandle.State.SUBMITTED)waitForRegistration()launcherBackend.setState(SparkAppHandle.State.RUNNING)}
  • CoarseGrainedSchedulerBackend 文档
/**
). 一个后端调度器 等待粗粒度 executors 通过 Akka连接他
).在Spark作业期间,这个后端调度接管着每个executor 比起交出executors给别人调度
).无论何时完成任务,都要求调度器启动一个新的executor给每个每个新的任务
).executors 可以以多种方式启动,例如 粗粒度 Mesos模式 Mesos任务
).或Spark standalone 部署模式的 standalone 处理* A scheduler backend that waits for coarse grained executors to connect to it through Akka.
* This backend holds onto each executor for the duration of the Spark job rather than relinquishing
* executors whenever a task is done and asking the scheduler to launch a new executor for
* each new task. Executors may be launched in a variety of ways, such as Mesos tasks for the
* coarse-grained Mesos mode or standalone processes for Spark's standalone deploy mode
* (spark.deploy.*).
*/
private[spark]
class CoarseGrainedSchedulerBackend(scheduler: TaskSchedulerImpl, val rpcEnv: RpcEnv)extends ExecutorAllocationClient with SchedulerBackend with Logging
{
  • 调用ClientEndpoint 的 onStart方法 异步向所有master注册,向master发送消息: RegisterApplication
override def onStart(): Unit = {try {registerWithMaster(1)} catch {case e: Exception =>logWarning("Failed to connect to master", e)markDisconnected()stop()}}
 /*** Register with all masters asynchronously. It will call `registerWithMaster` every* REGISTRATION_TIMEOUT_SECONDS seconds until exceeding REGISTRATION_RETRIES times.* Once we connect to a master successfully, all scheduling work and Futures will be cancelled.** nthRetry means this is the nth attempt to register with master.*/private def registerWithMaster(nthRetry: Int) {registerMasterFutures.set(tryRegisterAllMasters())registrationRetryTimer.set(registrationRetryThread.scheduleAtFixedRate(new Runnable {override def run(): Unit = {if (registered.get) {registerMasterFutures.get.foreach(_.cancel(true))registerMasterThreadPool.shutdownNow()} else if (nthRetry >= REGISTRATION_RETRIES) {markDead("All masters are unresponsive! Giving up.")} else {registerMasterFutures.get.foreach(_.cancel(true))registerWithMaster(nthRetry + 1)}}}, REGISTRATION_TIMEOUT_SECONDS, REGISTRATION_TIMEOUT_SECONDS, TimeUnit.SECONDS))}
   /***  Register with all masters asynchronously and returns an array `Future`s for cancellation.*/private def tryRegisterAllMasters(): Array[JFuture[_]] = {for (masterAddress <- masterRpcAddresses) yield {registerMasterThreadPool.submit(new Runnable {override def run(): Unit = try {if (registered.get) {return}logInfo("Connecting to master " + masterAddress.toSparkURL + "...")val masterRef =rpcEnv.setupEndpointRef(Master.SYSTEM_NAME, masterAddress, Master.ENDPOINT_NAME)masterRef.send(RegisterApplication(appDescription, self))} catch {case ie: InterruptedException => // Cancelledcase NonFatal(e) => logWarning(s"Failed to connect to master $masterAddress", e)}})}}

org.apache.spark.rpc.netty.Dispatcher

类文档说明
/**
一个消息分配器,负责将RPC消息路由到适当的端点
* A message dispatcher, responsible for routing RPC messages to the appropriate endpoint(s).
*/
private[netty] class Dispatcher(nettyEnv: NettyRpcEnv) extends Logging {
注册RPC端点 (关键通信及OnStart方法的调用)
/*** new EndpointData(name, endpoint, endpointRef) 的时候会进行 *  val inbox = new Inbox(ref, endpoint)的操作* Inbox 实例化时会进行如下操作,当相于首先增加OnStart消息// OnStart should be the first message to processinbox.synchronized {messages.add(OnStart)}*/
def registerRpcEndpoint(name: String, endpoint: RpcEndpoint): NettyRpcEndpointRef = {val addr = RpcEndpointAddress(nettyEnv.address, name)val endpointRef = new NettyRpcEndpointRef(nettyEnv.conf, addr, nettyEnv)synchronized {if (stopped) {throw new IllegalStateException("RpcEnv has been stopped")}if (endpoints.putIfAbsent(name, new EndpointData(name, endpoint, endpointRef)) != null) {throw new IllegalArgumentException(s"There is already an RpcEndpoint called $name")}val data = endpoints.get(name)endpointRefs.put(data.endpoint, data.ref)receivers.offer(data)  // for the OnStart message}endpointRef}
Inbox

A inbox that stores messages for an [[RpcEndpoint]] and posts messages to it thread-safely.

/**
* Inbox 实例化时会进行如下操作,当相于首先增加OnStart消息给当前的对象
(也就是每个RpcEndpoint 子类进行注册时,首先增加OnStart消息)
* OnStart消息在 process方法中会进行 endpoint实现类的onStart() 方法回调
*/// OnStart should be the first message to processinbox.synchronized {messages.add(OnStart)}
  /*** Process stored messages.*/def process(dispatcher: Dispatcher): Unit = {......
case OnStart =>endpoint.onStart()if (!endpoint.isInstanceOf[ThreadSafeRpcEndpoint]) {inbox.synchronized {if (!stopped) {enableConcurrent = true}}}

入口代码块 400行

try {_conf = config.clone()_conf.validateSettings()if (!_conf.contains("spark.master")) {throw new SparkException("A master URL must be set in your configuration")}if (!_conf.contains("spark.app.name")) {throw new SparkException("An application name must be set in your configuration")}// System property spark.yarn.app.id must be set if user code ran by AM on a YARN cluster// yarn-standalone is deprecated, but still supportedif ((master == "yarn-cluster" || master == "yarn-standalone") &&!_conf.contains("spark.yarn.app.id")) {throw new SparkException("Detected yarn-cluster mode, but isn't running on a cluster. " +"Deployment to YARN is not supported directly by SparkContext. Please use spark-submit.")}if (_conf.getBoolean("spark.logConf", false)) {logInfo("Spark configuration:\n" + _conf.toDebugString)}// Set Spark driver host and port system properties_conf.setIfMissing("spark.driver.host", Utils.localHostName())_conf.setIfMissing("spark.driver.port", "0")_conf.set("spark.executor.id", SparkContext.DRIVER_IDENTIFIER)_jars = _conf.getOption("spark.jars").map(_.split(",")).map(_.filter(_.size != 0)).toSeq.flatten_files = _conf.getOption("spark.files").map(_.split(",")).map(_.filter(_.size != 0)).toSeq.flatten_eventLogDir =if (isEventLogEnabled) {val unresolvedDir = conf.get("spark.eventLog.dir", EventLoggingListener.DEFAULT_LOG_DIR).stripSuffix("/")Some(Utils.resolveURI(unresolvedDir))} else {None}_eventLogCodec = {val compress = _conf.getBoolean("spark.eventLog.compress", false)if (compress && isEventLogEnabled) {Some(CompressionCodec.getCodecName(_conf)).map(CompressionCodec.getShortName)} else {None}}_conf.set("spark.externalBlockStore.folderName", externalBlockStoreFolderName)if (master == "yarn-client") System.setProperty("SPARK_YARN_MODE", "true")// "_jobProgressListener" should be set up before creating SparkEnv because when creating// "SparkEnv", some messages will be posted to "listenerBus" and we should not miss them._jobProgressListener = new JobProgressListener(_conf)listenerBus.addListener(jobProgressListener)// Create the Spark execution environment (cache, map output tracker, etc)_env = createSparkEnv(_conf, isLocal, listenerBus)SparkEnv.set(_env)// If running the REPL, register the repl's output dir with the file server._conf.getOption("spark.repl.class.outputDir").foreach { path =>val replUri = _env.rpcEnv.fileServer.addDirectory("/classes", new File(path))_conf.set("spark.repl.class.uri", replUri)}_metadataCleaner = new MetadataCleaner(MetadataCleanerType.SPARK_CONTEXT, this.cleanup, _conf)_statusTracker = new SparkStatusTracker(this)_progressBar =if (_conf.getBoolean("spark.ui.showConsoleProgress", true) && !log.isInfoEnabled) {Some(new ConsoleProgressBar(this))} else {None}_ui =if (conf.getBoolean("spark.ui.enabled", true)) {Some(SparkUI.createLiveUI(this, _conf, listenerBus, _jobProgressListener,_env.securityManager, appName, startTime = startTime))} else {// For tests, do not enable the UINone}// Bind the UI before starting the task scheduler to communicate// the bound port to the cluster manager properly_ui.foreach(_.bind())_hadoopConfiguration = SparkHadoopUtil.get.newConfiguration(_conf)// Add each JAR given through the constructorif (jars != null) {jars.foreach(addJar)}if (files != null) {files.foreach(addFile)}_executorMemory = _conf.getOption("spark.executor.memory").orElse(Option(System.getenv("SPARK_EXECUTOR_MEMORY"))).orElse(Option(System.getenv("SPARK_MEM")).map(warnSparkMem)).map(Utils.memoryStringToMb).getOrElse(1024)// Convert java options to env vars as a work around// since we can't set env vars directly in sbt.for { (envKey, propKey) <- Seq(("SPARK_TESTING", "spark.testing"))value <- Option(System.getenv(envKey)).orElse(Option(System.getProperty(propKey)))} {executorEnvs(envKey) = value}Option(System.getenv("SPARK_PREPEND_CLASSES")).foreach { v =>executorEnvs("SPARK_PREPEND_CLASSES") = v}// The Mesos scheduler backend relies on this environment variable to set executor memory.// TODO: Set this only in the Mesos scheduler.executorEnvs("SPARK_EXECUTOR_MEMORY") = executorMemory + "m"executorEnvs ++= _conf.getExecutorEnvexecutorEnvs("SPARK_USER") = sparkUser// We need to register "HeartbeatReceiver" before "createTaskScheduler" because Executor will// retrieve "HeartbeatReceiver" in the constructor. (SPARK-6640)_heartbeatReceiver = env.rpcEnv.setupEndpoint(HeartbeatReceiver.ENDPOINT_NAME, new HeartbeatReceiver(this))// Create and start the schedulerval (sched, ts) = SparkContext.createTaskScheduler(this, master)_schedulerBackend = sched_taskScheduler = ts_dagScheduler = new DAGScheduler(this)_heartbeatReceiver.ask[Boolean](TaskSchedulerIsSet)// start TaskScheduler after taskScheduler sets DAGScheduler reference in DAGScheduler's// constructor_taskScheduler.start()_applicationId = _taskScheduler.applicationId()_applicationAttemptId = taskScheduler.applicationAttemptId()_conf.set("spark.app.id", _applicationId)_ui.foreach(_.setAppId(_applicationId))_env.blockManager.initialize(_applicationId)// The metrics system for Driver need to be set spark.app.id to app ID.// So it should start after we get app ID from the task scheduler and set spark.app.id.metricsSystem.start()// Attach the driver metrics servlet handler to the web ui after the metrics system is started.metricsSystem.getServletHandlers.foreach(handler => ui.foreach(_.attachHandler(handler)))_eventLogger =if (isEventLogEnabled) {val logger =new EventLoggingListener(_applicationId, _applicationAttemptId, _eventLogDir.get,_conf, _hadoopConfiguration)logger.start()listenerBus.addListener(logger)Some(logger)} else {None}// Optionally scale number of executors dynamically based on workload. Exposed for testing.val dynamicAllocationEnabled = Utils.isDynamicAllocationEnabled(_conf)if (!dynamicAllocationEnabled && _conf.getBoolean("spark.dynamicAllocation.enabled", false)) {logWarning("Dynamic Allocation and num executors both set, thus dynamic allocation disabled.")}_executorAllocationManager =if (dynamicAllocationEnabled) {Some(new ExecutorAllocationManager(this, listenerBus, _conf))} else {None}_executorAllocationManager.foreach(_.start())_cleaner =if (_conf.getBoolean("spark.cleaner.referenceTracking", true)) {Some(new ContextCleaner(this))} else {None}_cleaner.foreach(_.start())setupAndStartListenerBus()postEnvironmentUpdate()postApplicationStart()// Post init_taskScheduler.postStartHook()_env.metricsSystem.registerSource(_dagScheduler.metricsSource)_env.metricsSystem.registerSource(new BlockManagerSource(_env.blockManager))_executorAllocationManager.foreach { e =>_env.metricsSystem.registerSource(e.executorAllocationManagerSource)}// Make sure the context is stopped if the user forgets about it. This avoids leaving// unfinished event logs around after the JVM exits cleanly. It doesn't help if the JVM// is killed, though._shutdownHookRef = ShutdownHookManager.addShutdownHook(ShutdownHookManager.SPARK_CONTEXT_SHUTDOWN_PRIORITY) { () =>logInfo("Invoking stop() from shutdown hook")stop()}} catch {case NonFatal(e) =>logError("Error initializing SparkContext.", e)try {stop()} catch {case NonFatal(inner) =>logError("Error stopping SparkContext after init error.", inner)} finally {throw e}}

这篇关于SparkContext 源码分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/365754

相关文章

Java NoClassDefFoundError运行时错误分析解决

《JavaNoClassDefFoundError运行时错误分析解决》在Java开发中,NoClassDefFoundError是一种常见的运行时错误,它通常表明Java虚拟机在尝试加载一个类时未能... 目录前言一、问题分析二、报错原因三、解决思路检查类路径配置检查依赖库检查类文件调试类加载器问题四、常见

Python中的Walrus运算符分析示例详解

《Python中的Walrus运算符分析示例详解》Python中的Walrus运算符(:=)是Python3.8引入的一个新特性,允许在表达式中同时赋值和返回值,它的核心作用是减少重复计算,提升代码简... 目录1. 在循环中避免重复计算2. 在条件判断中同时赋值变量3. 在列表推导式或字典推导式中简化逻辑

Java程序进程起来了但是不打印日志的原因分析

《Java程序进程起来了但是不打印日志的原因分析》:本文主要介绍Java程序进程起来了但是不打印日志的原因分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java程序进程起来了但是不打印日志的原因1、日志配置问题2、日志文件权限问题3、日志文件路径问题4、程序

Java 正则表达式URL 匹配与源码全解析

《Java正则表达式URL匹配与源码全解析》在Web应用开发中,我们经常需要对URL进行格式验证,今天我们结合Java的Pattern和Matcher类,深入理解正则表达式在实际应用中... 目录1.正则表达式分解:2. 添加域名匹配 (2)3. 添加路径和查询参数匹配 (3) 4. 最终优化版本5.设计思

Java字符串操作技巧之语法、示例与应用场景分析

《Java字符串操作技巧之语法、示例与应用场景分析》在Java算法题和日常开发中,字符串处理是必备的核心技能,本文全面梳理Java中字符串的常用操作语法,结合代码示例、应用场景和避坑指南,可快速掌握字... 目录引言1. 基础操作1.1 创建字符串1.2 获取长度1.3 访问字符2. 字符串处理2.1 子字

Python 迭代器和生成器概念及场景分析

《Python迭代器和生成器概念及场景分析》yield是Python中实现惰性计算和协程的核心工具,结合send()、throw()、close()等方法,能够构建高效、灵活的数据流和控制流模型,这... 目录迭代器的介绍自定义迭代器省略的迭代器生产器的介绍yield的普通用法yield的高级用法yidle

C++ Sort函数使用场景分析

《C++Sort函数使用场景分析》sort函数是algorithm库下的一个函数,sort函数是不稳定的,即大小相同的元素在排序后相对顺序可能发生改变,如果某些场景需要保持相同元素间的相对顺序,可使... 目录C++ Sort函数详解一、sort函数调用的两种方式二、sort函数使用场景三、sort函数排序

Java调用C++动态库超详细步骤讲解(附源码)

《Java调用C++动态库超详细步骤讲解(附源码)》C语言因其高效和接近硬件的特性,时常会被用在性能要求较高或者需要直接操作硬件的场合,:本文主要介绍Java调用C++动态库的相关资料,文中通过代... 目录一、直接调用C++库第一步:动态库生成(vs2017+qt5.12.10)第二步:Java调用C++

kotlin中const 和val的区别及使用场景分析

《kotlin中const和val的区别及使用场景分析》在Kotlin中,const和val都是用来声明常量的,但它们的使用场景和功能有所不同,下面给大家介绍kotlin中const和val的区别,... 目录kotlin中const 和val的区别1. val:2. const:二 代码示例1 Java

Go标准库常见错误分析和解决办法

《Go标准库常见错误分析和解决办法》Go语言的标准库为开发者提供了丰富且高效的工具,涵盖了从网络编程到文件操作等各个方面,然而,标准库虽好,使用不当却可能适得其反,正所谓工欲善其事,必先利其器,本文将... 目录1. 使用了错误的time.Duration2. time.After导致的内存泄漏3. jsO