英飞凌TC3xx SOTA分析

2023-11-07 15:30
文章标签 分析 sota 英飞凌 tc3xx

本文主要是介绍英飞凌TC3xx SOTA分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.SOTA功能描述

SOTA(Sofeware update over the air),指不连接烧写器的情况下,通过CAN、串口、以太网等通讯方式,实现应用程序的更新。汽车行业里通常有如下几种方案:

  1. 针对MCU控制器,需要分别开发汽车BootLoader程序(需裁剪UDS协议)和应用程序,MCU上电后首先运行BootLoader,然后正常进入应用程序;当需要更新应用程序时,可通过诊断仪下发指令给MCU,MCU的应用程序收到指令后将设置更新标志位,然后进行复位重新进入BootLoader,Bootloader根据标志位开始擦除旧APP,接收新的APP数据并直接写在APP运行的Flash地址空间。该方案的优点是不需要额外的Flash暂存数据,缺点是BootLoader代码更复杂,且如果数据传输发生中断,旧的APP将不能被恢复。该方案更适合Flash容量较小的MCU。

  1. 针对大容量Flash的MCU或者MCU+SOC异构控制器,由应用程序直接接收数据并且暂存于Flash,接收完毕后APP置位更新标志位重启MCU,BootLoader检查更新标志位,如有效,则擦除旧的APP,再将暂存于Flash的新APP数据写入APP运行地址处。该方案的优点是更新数据的接收由APP完成,BootLoader不需要通讯协议栈,代码量更小,且数据传输中断时,原有APP不损坏。缺点是需要额外的Flash空间暂存更新数据。

  1. 在Flash中划分出两块相同大小的区域,分为A区和B区,都用来存放APP,但同一时间下只有一个区的APP是有效的,分别设置一个标志位标识其有效性。初始状态下先将APP写入A区,更新的时候,将新的APP写入B区,再把A区的APP擦除,同时更新两个区的有效性标志位状态。BootLoader中判断哪个区的APP有效,就跳转到哪个区运行。这种方法不需要重复拷贝APP数据,但最大的一个缺陷是AB区的APP程序运行地址不同,需要分别编译,从而使得可应用性大大降低。

  1. 英飞凌SWAP功能:它的A\B Bank Flash物理地址支持两种不同物理地址映射到同一个逻辑地址方式(MCU自动从两种物理地址映射一个虚拟地址),从而使得APP编译时不需要区分AB区,使用相同的逻辑地址即可。

2.英飞凌TC3xx SWAP功能和内存映射机制

根据英飞凌TC3xx_UserManual中对SOTA的介绍。除开TC33x和TC33xED之外,所有的系列都可以将所有PFLASH划分为两个bank。当使能SOTA功能时,其中一个bank支持读取和执行,而另一组可以写入新代码。那么也意味着如果要使用SWAP功能,应用程序所能使用Flash容量至少会减半。举个例子,TC39xFlash总共16MB,那么应用程序不能超过8MB,因为要设计A/B互为备份。

由于SWAP是TC3xx支持两种不同的物理地址映射到同一个逻辑地址,因此当SWAP功能启用后,我们就要看它是如何实现这个地址映射的。

首先来看Standard address map,PF0--5按照顺序进行地址映射PF0/1/2/3/4/(5+reserved):

当使用SWAP功能后,虚拟地址实际对应的物理flash为 PF2/3/0/1/(5+reserved)/4:

从TC39x的备选地址映射来看,PF0/1和PF2/3可以SWAP替换,PF4和PF5+reserved可以swap替换?

如果不这样理解,那就是PF0/1/4为Active Bank,PF2/3/5为Inactive Bank。这样会出现地址不连续?

这里留个疑问,先继续往下看。

3.SOTA开发配置

3.1 SOTA相关配置参数

根据芯片手册,与SOTA相关的配置参数如下:

参数

描述

对应寄存器

相关模块

UCB_OTP.PROCONTP.SWAPEN

该位使能后,在下次系统复位后进入SOTA模式。

下次系统复位后,为active bank配置的PROCONHSMCXx和PROCONHSMCOTP同样适用与inactive bank

DMU_HF_PROCONTP.SWAPEN

DMU

UCB_SWAP_ORIG/COPY

用户可编程活动地址映射是标准地址映射或备用地址映射。

进入SOTA模式后,根据上述配置选择标准还是备用地址映射

这篇关于英飞凌TC3xx SOTA分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/364569

相关文章

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

Olingo分析和实践之EDM 辅助序列化器详解(最佳实践)

《Olingo分析和实践之EDM辅助序列化器详解(最佳实践)》EDM辅助序列化器是ApacheOlingoOData框架中无需完整EDM模型的智能序列化工具,通过运行时类型推断实现灵活数据转换,适用... 目录概念与定义什么是 EDM 辅助序列化器?核心概念设计目标核心特点1. EDM 信息可选2. 智能类

Olingo分析和实践之OData框架核心组件初始化(关键步骤)

《Olingo分析和实践之OData框架核心组件初始化(关键步骤)》ODataSpringBootService通过初始化OData实例和服务元数据,构建框架核心能力与数据模型结构,实现序列化、URI... 目录概述第一步:OData实例创建1.1 OData.newInstance() 详细分析1.1.1

Olingo分析和实践之ODataImpl详细分析(重要方法详解)

《Olingo分析和实践之ODataImpl详细分析(重要方法详解)》ODataImpl.java是ApacheOlingoOData框架的核心工厂类,负责创建序列化器、反序列化器和处理器等组件,... 目录概述主要职责类结构与继承关系核心功能分析1. 序列化器管理2. 反序列化器管理3. 处理器管理重要方

SpringBoot中六种批量更新Mysql的方式效率对比分析

《SpringBoot中六种批量更新Mysql的方式效率对比分析》文章比较了MySQL大数据量批量更新的多种方法,指出REPLACEINTO和ONDUPLICATEKEY效率最高但存在数据风险,MyB... 目录效率比较测试结构数据库初始化测试数据批量修改方案第一种 for第二种 case when第三种

解决1093 - You can‘t specify target table报错问题及原因分析

《解决1093-Youcan‘tspecifytargettable报错问题及原因分析》MySQL1093错误因UPDATE/DELETE语句的FROM子句直接引用目标表或嵌套子查询导致,... 目录报js错原因分析具体原因解决办法方法一:使用临时表方法二:使用JOIN方法三:使用EXISTS示例总结报错原

MySQL中的LENGTH()函数用法详解与实例分析

《MySQL中的LENGTH()函数用法详解与实例分析》MySQLLENGTH()函数用于计算字符串的字节长度,区别于CHAR_LENGTH()的字符长度,适用于多字节字符集(如UTF-8)的数据验证... 目录1. LENGTH()函数的基本语法2. LENGTH()函数的返回值2.1 示例1:计算字符串

Android kotlin中 Channel 和 Flow 的区别和选择使用场景分析

《Androidkotlin中Channel和Flow的区别和选择使用场景分析》Kotlin协程中,Flow是冷数据流,按需触发,适合响应式数据处理;Channel是热数据流,持续发送,支持... 目录一、基本概念界定FlowChannel二、核心特性对比数据生产触发条件生产与消费的关系背压处理机制生命周期

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.