Druid--数据摄取

2023-11-07 01:59
文章标签 数据 druid 摄取

本文主要是介绍Druid--数据摄取,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

数据摄取

  • Druid数据摄取分类
  • 批量(离线)数据摄取
      • 摄取本地文件
      • 摄取HDFS文件
  • 流式(实时)数据摄取
      • Kafka索引服务方式摄取
  • 摄取配置文件结构说明
    • 主体结构
    • 数据解析模式
    • 数据源配置
    • 优化配置
    • 了解Druid WebUI生成 spec

Druid数据摄取分类

  • Druid支持流式和批量两种方式的数据摄入,针对不同类型的数据,Druid将外部数据源分为两种形式:
    • 流式数据源
      • 指的是持续不断地生产数据的数据源。例如:消息队列、日志、文件等
    • 静态数据源
      • 指的是数据已经生产完毕,不会有新数据产生的数据源。例如:文件系统的文件

批量(离线)数据摄取

  • 批量数据可以通过两种方式来摄入:

摄取本地文件

摄取HDFS文件

  • Druid支持加载HDFS上的数据。它会使用 HadoopDruidIndexer 加载批量数据,将数据生成 segments 文件,存放在HDFS上,再从HDFS下载 segments 文件到本地。然后便可从Druid中查询数据。
  • 需求:摄取HDFS上的wikiticker-2019-09-12-sampled.json文件到Druid中
  • 操作步骤:
  • 1、启动HDFS集群、YARN集群
  • 2、上传 druid测试数据源\维基百科访问日志数据到任意服务器 /root/druid/data3 目录,再将 wikiticker-2019-09-12-sampled.json 文件上传到HDFS
hadoop fs -put wikiticker-2015-09-12-sampled.json /
  • 3、修改 index_wikiticker-2015-9-12-sample.json 文件中配置 HDFS 的地址
  • 4、使用 postman 提交索引任务
    • 将index_wikiticker-2019-9-12-sample.json文件中的内容拷贝到 postman 中
    • 发送post请求到http://node1:8090/druid/indexer/v1/task
  • 5、到 Druid控制台中执行SQL查询
SELECT *
FROM "wikiticker"
LIMIT 1

流式(实时)数据摄取

Kafka索引服务方式摄取

  • 需求:实时摄取Kafka中 metrics topic的数据到 Druid中
  • 操作步骤:
  • 1、启动 Kafka 集群
  • 2、在Kafka集群上创建一个名为metrics的topic
bin/kafka-topics.sh --create --zookeeper node1:2181,node2:2181,node3:2181, --partitions 1 --replication-factor 1 --topic metrics
  • 3、定义摄取配置文件

    • 修改 druid测试数据源\kafka实时摄取数据中的 index-metrics-kafka.json 文件中的kafka服务器地址
  • 4、打开postman提交索引任务

    • 将 index-metrics-kafka.json 文件中的内容拷贝到 postman 中
    • 发送post请求到http://node1:8090/druid/indexer/v1/supervisor
  • 在Overlord中可以看到
    在这里插入图片描述

  • 5、在Kafka集群上开启一个控制台producer

/export/servers/kafka_2.11-1.0.0/bin/kafka-console-producer.sh --broker-list node1:9092,node2:9092,node3:9092 --topic metrics
  • 6、在Kafka producer控制台中粘贴如下数据
{"time":"2019-07-23T17:57:58Z","url":"/foo/bar","user":"alice","latencyMs":32}
{"time":"2019-07-23T17:57:59Z","url":"/","user":"bob","latencyMs":11}
{"time":"2019-07-23T17:58:00Z","url": "/foo/bar","user":"bob","latencyMs":45}
  • 7、在 Druid Console中执行以下SQL查询
SELECT *
from "metrics-kafka"
LIMIT 1

摄取配置文件结构说明

主体结构

  • 摄取配置文件主要由以下几个部分组成:
    • type:文件上传方式(index、index_hadoop、kafka)
    • spec
      • dataSchema:数据解析模式
      • ioConfig:数据源
      • turningConfig:优化配置(分区规则、分区大小)
{// ① 文件上传方式// 1.1 index        - 上传本地文件// 1.2 index_hadoop - 上传HDFS文件// 1.3 kafka        - 拉取Kafka流数据"type": "index","spec": {// ② 数据解析模式"dataSchema": {...},// ③ 摄取数据源"ioConfig": {...},// ④ 摄取过程优化配置"tuningConfig": {...}}
}

数据解析模式

  • 数据解析模式,主要为针对数据文件,定义了一系列规则:
    • 取时间戳属性
    • 维度属性
    • 度量属性
    • 定义如何进行指标计算
    • 配置粒度规则
// ② 数据摄取模式
"dataSchema": {// 2.1 数据源(表)"dataSource": "ad_event_local",// 2.2 解析器"parser": {// 2.2.1 解析字符串文本"type": "String","parseSpec": {// 2.2.1.1 字符串文本格式为JSON"format": "json",// 2.2.1.2 指定维度列名,维度与时间一致,导入时聚合"dimensionsSpec": {"dimensions": ["city","platform"]},// 2.2.1.3 指定时间戳的列,以及时间戳格式化方式"timestampSpec": {"format": "auto","column": "timestamp"}}},// 2.3 指标计算规则"metricsSpec": [{//name表示列名"name": "count","type": "count"},{// 2.3.1 聚合计算后指标的列名"name": "click",// 2.3.2 聚合函数:count、longSum、doubleSum、longMin、doubleMin、doubleMax"type": "longSum","fieldName": "click"}]// 2.4 粒度规则"granularitySpec": {"type": "uniform",// 2.4.1 按天来生成 segment (每天生成一个segment)"segmentGranularity": "day",// 2.4.2 查询的最小粒度(最小粒度为小时)"queryGranularity": "hour",// 2.4.3 加载原始数据的时间范围,批量数据导入需要设置/流式导入无需设置"intervals": ["2018-12-01/2018-12-03"]},}

数据源配置

  • 数据源配置主要指定:
    • 要加载数据的类型
    • 从哪儿加载数据
"ioConfig": {"type": "index","inputSpec": {// 3.1 本地文件 local/ HDFS使用 hadoop"type": "local",// 3.2 路径"baseDir": "/root/data/",// 3.3 只过滤出来哪个文件"filter": "ad_event.json"}
}

优化配置

  • 通常在优化配置中可以指定一些优化选项
"tuningConfig": {"type": "index",// 4.1 分区类型"partitionsSpec": {"type": "hashed",// 4.2 每个分区的目标行数(这里配置每个分区500W行)"targetPartitionSize": 5000000}
}

了解Druid WebUI生成 spec

在这里插入图片描述

这篇关于Druid--数据摄取的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/360500

相关文章

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

MySQL中查询和展示LONGBLOB类型数据的技巧总结

《MySQL中查询和展示LONGBLOB类型数据的技巧总结》在MySQL中LONGBLOB是一种二进制大对象(BLOB)数据类型,用于存储大量的二进制数据,:本文主要介绍MySQL中查询和展示LO... 目录前言1. 查询 LONGBLOB 数据的大小2. 查询并展示 LONGBLOB 数据2.1 转换为十

使用SpringBoot+InfluxDB实现高效数据存储与查询

《使用SpringBoot+InfluxDB实现高效数据存储与查询》InfluxDB是一个开源的时间序列数据库,特别适合处理带有时间戳的监控数据、指标数据等,下面详细介绍如何在SpringBoot项目... 目录1、项目介绍2、 InfluxDB 介绍3、Spring Boot 配置 InfluxDB4、I

Java整合Protocol Buffers实现高效数据序列化实践

《Java整合ProtocolBuffers实现高效数据序列化实践》ProtocolBuffers是Google开发的一种语言中立、平台中立、可扩展的结构化数据序列化机制,类似于XML但更小、更快... 目录一、Protocol Buffers简介1.1 什么是Protocol Buffers1.2 Pro