基于翻筋斗觅食策略的灰狼优化算法

2023-11-07 00:20

本文主要是介绍基于翻筋斗觅食策略的灰狼优化算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、理论基础
    • 1、GWO算法
    • 2、改进GWO算法
      • (1)动态扰动因子策略
      • (2)翻筋斗觅食策略
    • 3、DSF-GWO算法步骤
  • 二、实验测试及分析
  • 三、参考文献

一、理论基础

1、GWO算法

请参考这里。

2、改进GWO算法

(1)动态扰动因子策略

本文将引入新的动态扰动因子策略以确保精度,扰动因子 E E E如式(1)所示,更新后的 A A A如式(2)所示。 E = r a n d n ⋅ ( sin ⁡ ω ( π 2 ⋅ t t max ⁡ ) + cos ⁡ ( π 2 ⋅ t t max ⁡ ) − 1 ) (1) E=randn\cdot\left(\sin^\omega(\frac\pi2\cdot\frac{t}{t_{\max}})+\cos(\frac\pi2\cdot\frac{t}{t_{\max}})-1\right)\tag{1} E=randn(sinω(2πtmaxt)+cos(2πtmaxt)1)(1) A = a ( 2 r 1 − 1 ) + E (2) A=a(2r_1-1)+E\tag{2} A=a(2r11)+E(2)其中, r a n d n randn randn表示服从标准正态分布的随机数; ω \omega ω表示某一常数,它决定了扰动因子峰值的位置。
图1可以看出不同 ω \omega ω值的扰动因子振幅情况,振幅随着 ω \omega ω的增加而减小,最早出现较大振幅的是 ω = 2 \omega=2 ω=2的扰动因子。
在这里插入图片描述

图1 不同 ω \omega ω下扰动因子 E E E的变化

从图中可以看出,当 ω = 2 \omega=2 ω=2时, ∣ A ∣ |A| A在迭代后期会突然大于1,且扰动因子的振幅较大,严重影响了收敛性;当 ω = 3 \omega=3 ω=3时,扰动因子的振幅较小,后期跳出局部最优的能力会变弱,但是并不影响算法本身的性能;当 ω = 2.5 \omega=2.5 ω=2.5时,可以看出收敛性能略有提升。
图2为不同 ω \omega ω值下 A A A的数值的变化。
在这里插入图片描述

(a) ω \omega ω=2

在这里插入图片描述
(a) ω \omega ω=2.5

在这里插入图片描述
(a) ω \omega ω=3

图2 不同w下A的数值变化

(2)翻筋斗觅食策略

由于灰狼优化算法后期易陷入局部最优,针对这个问题受到蝠鲼觅食的启发,引入较为新颖的翻筋斗觅食策略来改善GWO算法跳出局部最优的能力。这种捕猎行为,可以将猎物视为一个支点,每次捕猎将会更新到当前位置与对称于支点对面位置的某一位置,数学模型如下: x i d ( t + 1 ) = x i d ( t ) + S ⋅ ( r 1 x b e s t d − r 2 x i d ( t ) ) (3) x_i^d(t+1)=x_i^d(t)+S\cdot(r_1x_{best}^d-r_2x_i^d(t))\tag{3} xid(t+1)=xid(t)+S(r1xbestdr2xid(t))(3)其中, S S S表示空翻因子,决定了翻到猎物对面的位置,取 S = 2 S =2 S=2 x b e s t d x_{best}^d xbestd为猎物位置; N N N为狼群数量; d d d为维度; r 1 r_1 r1 r 2 r_2 r2为两个在 [ 0 , 1 ] [0,1] [0,1]的随机数。
在每一次的迭代中,当前灰狼位置 x i d ( t ) x_i^d(t) xid(t)会与其跳跃支点后的灰狼进行适应度对比,如果此时已经陷入局部最优,则灰狼位置 x i d ( t ) x_i^d(t) xid(t)可能会被跳跃支点后的灰狼取代(取决于适应度值),而随着迭代的进行,被取代的概率就越大,跳出局部最优的效果就越明显。与反向学习策略不同的是,翻筋斗策略在更新位置时是围绕最优狼进行的,这使得算法具有更强的收敛性。

3、DSF-GWO算法步骤

DSF-GWO算法步骤如下:
a)初始化灰狼种群参数,包括灰狼种群规模 N N N、最大迭代次数 t max ⁡ t_{\max} tmax、空间维度 d i m dim dim、搜索空间的上下限 u b ub ub l b lb lb
b)计算狼群个体适应度值并确定 α \alpha α β \beta β δ \delta δ
c)更新参数 C C C,通过式(2)更新添加扰动因子的参数 A A A
d)更新狼群和猎物位置。
e)判断条件 t / t max ⁡ t/t_{\max} t/tmax是否大于 r a n d rand rand,是则根据式(3)进行翻筋斗计算,然后合并比较,通过升序筛选出新适应度值;否则直接跳至步骤f)。
f)跳到步骤b)直到满足终止条件,即计算到最大迭代次数 t max ⁡ t_{\max} tmax
g)输出最优解 α \alpha α狼的位置和适应度值。

二、实验测试及分析

为测试DSF-GWO算法的寻优性能,将其与GWO算法、WOA算法进行对比,以文献[1]中的f2~f4(单峰)、f9~f11(多峰)为例。设置狼群数量为30,维度为30,最大迭代次数为500,每个算法独立运算30次,取这30次计算的最差值、最优值、平均值及标准差。
对比结果显示如下:
在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述

函数:F2
DSF-GWO:最差值: 7.3304e-214,最优值:3.3382e-229,平均值:3.3373e-215,标准差:0
GWO:最差值: 8.2894e-18,最优值:1.6797e-19,平均值:1.7635e-18,标准差:1.6031e-18
WOA:最差值: 6.6291e-50,最优值:4.5475e-59,平均值:3.0107e-51,标准差:1.2234e-50
函数:F3
DSF-GWO:最差值: 0,最优值:0,平均值:0,标准差:0
GWO:最差值: 0.019131,最优值:1.3037e-05,平均值:0.0042121,标准差:0.0057549
WOA:最差值: 74821.4487,最优值:3538.8338,平均值:37942.7239,标准差:15983.9549
函数:F4
DSF-GWO:最差值: 4.4994e-201,最优值:1.6184e-216,平均值:1.5271e-202,标准差:0
GWO:最差值: 0.0002624,最优值:3.4902e-06,平均值:6.067e-05,标准差:7.0227e-05
WOA:最差值: 91.8094,最优值:0.12971,平均值:52.7425,标准差:30.3577
函数:F9
DSF-GWO:最差值: 0,最优值:0,平均值:0,标准差:0
GWO:最差值: 99.3297,最优值:3.7731,平均值:23.7643,标准差:17.8935
WOA:最差值: 5.6843e-14,最优值:0,平均值:1.8948e-15,标准差:1.0378e-14
函数:F10
DSF-GWO:最差值: 8.8818e-16,最优值:8.8818e-16,平均值:8.8818e-16,标准差:0
GWO:最差值: 2.931e-14,最优值:1.5099e-14,平均值:2.0783e-14,标准差:3.3118e-15
WOA:最差值: 7.9936e-15,最优值:8.8818e-16,平均值:4.204e-15,标准差:2.6279e-15
函数:F11
DSF-GWO:最差值: 0,最优值:0,平均值:0,标准差:0
GWO:最差值: 0.027149,最优值:0,平均值:0.0042574,标准差:0.008293
WOA:最差值: 1.1102e-16,最优值:0,平均值:3.7007e-18,标准差:2.027e-17

从图和表结合来看,DSF-GWO算法在收敛精度以及收敛速度两方面均有优势,证实了本文的改进是有效的。

三、参考文献

[1] 王正通, 程凤芹, 尤文, 等. 基于翻筋斗觅食策略的灰狼优化算法[J]. 计算机应用研究, 2021, 38(5): 1434-1437.

这篇关于基于翻筋斗觅食策略的灰狼优化算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/359993

相关文章

Redis过期删除机制与内存淘汰策略的解析指南

《Redis过期删除机制与内存淘汰策略的解析指南》在使用Redis构建缓存系统时,很多开发者只设置了EXPIRE但却忽略了背后Redis的过期删除机制与内存淘汰策略,下面小编就来和大家详细介绍一下... 目录1、简述2、Redis http://www.chinasem.cn的过期删除策略(Key Expir

利用Python实现时间序列动量策略

《利用Python实现时间序列动量策略》时间序列动量策略作为量化交易领域中最为持久且被深入研究的策略类型之一,其核心理念相对简明:对于显示上升趋势的资产建立多头头寸,对于呈现下降趋势的资产建立空头头寸... 目录引言传统策略面临的风险管理挑战波动率调整机制:实现风险标准化策略实施的技术细节波动率调整的战略价

SpringBoot中HTTP连接池的配置与优化

《SpringBoot中HTTP连接池的配置与优化》这篇文章主要为大家详细介绍了SpringBoot中HTTP连接池的配置与优化的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录一、HTTP连接池的核心价值二、Spring Boot集成方案方案1:Apache HttpCl

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

PyTorch高级特性与性能优化方式

《PyTorch高级特性与性能优化方式》:本文主要介绍PyTorch高级特性与性能优化方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、自动化机制1.自动微分机制2.动态计算图二、性能优化1.内存管理2.GPU加速3.多GPU训练三、分布式训练1.分布式数据

MySQL中like模糊查询的优化方案

《MySQL中like模糊查询的优化方案》在MySQL中,like模糊查询是一种常用的查询方式,但在某些情况下可能会导致性能问题,本文将介绍八种优化MySQL中like模糊查询的方法,需要的朋友可以参... 目录1. 避免以通配符开头的查询2. 使用全文索引(Full-text Index)3. 使用前缀索

C#实现高性能Excel百万数据导出优化实战指南

《C#实现高性能Excel百万数据导出优化实战指南》在日常工作中,Excel数据导出是一个常见的需求,然而,当数据量较大时,性能和内存问题往往会成为限制导出效率的瓶颈,下面我们看看C#如何结合EPPl... 目录一、技术方案核心对比二、各方案选型建议三、性能对比数据四、核心代码实现1. MiniExcel

Springboot实现推荐系统的协同过滤算法

《Springboot实现推荐系统的协同过滤算法》协同过滤算法是一种在推荐系统中广泛使用的算法,用于预测用户对物品(如商品、电影、音乐等)的偏好,从而实现个性化推荐,下面给大家介绍Springboot... 目录前言基本原理 算法分类 计算方法应用场景 代码实现 前言协同过滤算法(Collaborativ

Redis中6种缓存更新策略详解

《Redis中6种缓存更新策略详解》Redis作为一款高性能的内存数据库,已经成为缓存层的首选解决方案,然而,使用缓存时最大的挑战在于保证缓存数据与底层数据源的一致性,本文将介绍Redis中6种缓存更... 目录引言策略一:Cache-Aside(旁路缓存)策略工作原理代码示例优缺点分析适用场景策略二:Re

SpringBoot基于配置实现短信服务策略的动态切换

《SpringBoot基于配置实现短信服务策略的动态切换》这篇文章主要为大家详细介绍了SpringBoot在接入多个短信服务商(如阿里云、腾讯云、华为云)后,如何根据配置或环境切换使用不同的服务商,需... 目录目标功能示例配置(application.yml)配置类绑定短信发送策略接口示例:阿里云 & 腾