数据集笔记:杭州 上海 地铁客流数据

2023-11-06 19:59

本文主要是介绍数据集笔记:杭州 上海 地铁客流数据,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

数据集地址:PVCGN/data at master · liuwj2000/PVCGN (github.com)

1 数据集介绍

  • 从5:15到23:30的地铁乘客流量预测
    • 使用前四个时间间隔(15分钟 x 4 = 60分钟)的地铁乘客流量(进/出流量)来预测未来四个时间间隔(15分钟 x 4 = 60分钟)的地铁乘客流量(进/出流量)
      • 5:15-6:15 -- 预测 -> 6:15-7:15
      • 5:30-6:30 -- 预测 -> 6:30-7:30
      • ...
      • 21:15-22:15 -- 预测 -> 22:15-23:15
      • 21:30-22:30 -- 预测 -> 22:30-23:30
    • 每天可以分为66个时间片段
  • 杭州和上海每个数据集,各有六个pkl文件
    • 三个用于地铁乘客流量数据
      • 一个训练集、一个验证集和一个测试集
    • 三个用于地铁图信息
      • graph_conn.pkl: 地铁的物理图
      • graph_sml.pkl: 地铁的相似性图
      • graph_conn.pkl: 地铁的相关图

2 数据读取

2.1 流量数据

2.1.1 训练数据

import pickle
import os
os.chdir('data/shanghai/')f=open('train.pkl','rb')a=pickle.load(f)
a

字符串5:30表示从5:15到5:30的时间间隔

a['x'].shape,a['y'].shape
#((4092, 4, 288, 2), (4092, 4, 288, 2))a['xtime'].shape,a['ytime'].shape
#((4092, 4), (4092, 4))
  • 可以看到,这个数据是一个由4个ndarray组成的字典
    • x: 前四个时间间隔的地铁乘客流量(进/出流量)
      • 其形状是[T, n, N, D]
        • T是时间片段的数量(62天)
        • n是输入序列的长度(这里是4)
        • N是地铁站的数量
        • D是 inflow 和 outflow,所以为2
    • y: 下四个时间间隔的地铁乘客流量(进/出流量)
      • 其形状也是[T, m, N, D]
        • m是输入序列的长度(这里是4)
    • xtime: x的时间戳。其形状是[T, n]
    • ytime: y的时间戳。其形状是[T, m]

2.1.2 测试数据

import picklef=open('val.pkl','rb')a=pickle.load(f)
a['x'].shape,a['y'].shape,a['xtime'].shape,a['ytime'].shape
#((594, 4, 288, 2), (594, 4, 288, 2), (594, 4), (594, 4))

2.1.3 训练数据

import picklef=open('test.pkl','rb')a=pickle.load(f)
a['x'].shape,a['y'].shape,a['xtime'].shape,a['ytime'].shape
#((1386, 4, 288, 2), (1386, 4, 288, 2), (1386, 4), (1386, 4))

2.2 地图数据

2.2.1 地铁站的物理图

import picklef=open('graph_sh_conn.pkl','rb')a=pickle.load(f)
a,a.shape
'''
(array([[1., 1., 0., ..., 0., 0., 0.],[1., 1., 1., ..., 0., 0., 0.],[0., 1., 1., ..., 0., 0., 0.],...,[0., 0., 0., ..., 1., 1., 0.],[0., 0., 0., ..., 1., 1., 1.],[0., 0., 0., ..., 0., 1., 1.]]),(288, 288))
'''

2.2.2  地铁站的相关图

import picklef=open('graph_sh_cor.pkl','rb')a=pickle.load(f)
a,a.shape
'''
(array([[0.        , 0.01539433, 0.02738432, ..., 0.        , 0.        ,0.        ],[0.        , 0.        , 0.        , ..., 0.        , 0.        ,0.        ],[0.        , 0.01502989, 0.        , ..., 0.        , 0.        ,0.        ],...,[0.        , 0.        , 0.        , ..., 0.01615014, 0.        ,0.03536008],[0.        , 0.        , 0.        , ..., 0.        , 0.0092369 ,0.        ],[0.        , 0.        , 0.        , ..., 0.03341621, 0.00712248,0.01228689]]),(288, 288))
'''

2.2.3  地铁站的相似性图

import picklef=open('graph_sh_sml.pkl','rb')a=pickle.load(f)
a,a.shape
'''
(array([[1.        , 0.        , 0.13627907, ..., 0.        , 0.        ,0.        ],[0.        , 1.        , 0.        , ..., 0.        , 0.        ,0.        ],[0.13627907, 0.        , 1.        , ..., 0.        , 0.        ,0.        ],...,[0.        , 0.        , 0.        , ..., 1.        , 0.        ,0.        ],[0.        , 0.        , 0.        , ..., 0.        , 1.        ,0.        ],[0.        , 0.        , 0.        , ..., 0.        , 0.        ,1.        ]]),(288, 288))
'''

这篇关于数据集笔记:杭州 上海 地铁客流数据的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/358752

相关文章

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

使用SpringBoot整合Sharding Sphere实现数据脱敏的示例

《使用SpringBoot整合ShardingSphere实现数据脱敏的示例》ApacheShardingSphere数据脱敏模块,通过SQL拦截与改写实现敏感信息加密存储,解决手动处理繁琐及系统改... 目录痛点一:痛点二:脱敏配置Quick Start——Spring 显示配置:1.引入依赖2.创建脱敏

详解如何使用Python构建从数据到文档的自动化工作流

《详解如何使用Python构建从数据到文档的自动化工作流》这篇文章将通过真实工作场景拆解,为大家展示如何用Python构建自动化工作流,让工具代替人力完成这些数字苦力活,感兴趣的小伙伴可以跟随小编一起... 目录一、Excel处理:从数据搬运工到智能分析师二、PDF处理:文档工厂的智能生产线三、邮件自动化:

Python数据分析与可视化的全面指南(从数据清洗到图表呈现)

《Python数据分析与可视化的全面指南(从数据清洗到图表呈现)》Python是数据分析与可视化领域中最受欢迎的编程语言之一,凭借其丰富的库和工具,Python能够帮助我们快速处理、分析数据并生成高质... 目录一、数据采集与初步探索二、数据清洗的七种武器1. 缺失值处理策略2. 异常值检测与修正3. 数据

pandas实现数据concat拼接的示例代码

《pandas实现数据concat拼接的示例代码》pandas.concat用于合并DataFrame或Series,本文主要介绍了pandas实现数据concat拼接的示例代码,具有一定的参考价值,... 目录语法示例:使用pandas.concat合并数据默认的concat:参数axis=0,join=

C#代码实现解析WTGPS和BD数据

《C#代码实现解析WTGPS和BD数据》在现代的导航与定位应用中,准确解析GPS和北斗(BD)等卫星定位数据至关重要,本文将使用C#语言实现解析WTGPS和BD数据,需要的可以了解下... 目录一、代码结构概览1. 核心解析方法2. 位置信息解析3. 经纬度转换方法4. 日期和时间戳解析5. 辅助方法二、L

使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)

《使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)》字体设计和矢量图形处理是编程中一个有趣且实用的领域,通过Python的matplotlib库,我们可以轻松将字体轮廓... 目录背景知识字体轮廓的表示实现步骤1. 安装依赖库2. 准备数据3. 解析路径指令4. 绘制图形关键

解决mysql插入数据锁等待超时报错:Lock wait timeout exceeded;try restarting transaction

《解决mysql插入数据锁等待超时报错:Lockwaittimeoutexceeded;tryrestartingtransaction》:本文主要介绍解决mysql插入数据锁等待超时报... 目录报错信息解决办法1、数据库中执行如下sql2、再到 INNODB_TRX 事务表中查看总结报错信息Lock

使用C#删除Excel表格中的重复行数据的代码详解

《使用C#删除Excel表格中的重复行数据的代码详解》重复行是指在Excel表格中完全相同的多行数据,删除这些重复行至关重要,因为它们不仅会干扰数据分析,还可能导致错误的决策和结论,所以本文给大家介绍... 目录简介使用工具C# 删除Excel工作表中的重复行语法工作原理实现代码C# 删除指定Excel单元