MATLAB - Gazebo 联合仿真 —— 使用 UR10 机械臂检测和采摘水果

2023-11-06 15:20

本文主要是介绍MATLAB - Gazebo 联合仿真 —— 使用 UR10 机械臂检测和采摘水果,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

系列文章目录


文章目录

  • 系列文章目录
  • 前言
  • 一、设置 Gazebo 仿真环境
  • 二、在 Gazebo 中模拟和控制机器人
    • 2.1 概述
    • 2.2 任务调度器
    • 2.3 感知和目标生成系统
    • 2.4 运动规划
    • 2.5 机械臂和关节控制系统
  • 三、分配用于控制机器人的参数
    • 3.1 定义机器人模型和运动规划参数,
    • 3.2 定义机械手姿势和摄像机参数
    • 3.3 配置 Gazebo 协同仿真设置
    • 3.4 定义夹具控制设置
  • 4. Simulink 模型


前言

本示例演示如何在 Gazebo 物理模拟器中设置 Universal Robotics UR10 机械臂和仿真环境。您需要配置一个机器人从树上摘苹果的仿真环境。

本示例演示如何利用这些工具箱,使用 Universal Robotics UR10 机械手模拟机器人检测并从树上摘取苹果。

  • Robotics System Toolbox™ - 在 Simulink® 和 Gazebo 中对机械手进行建模、规划和模拟。

  • Navigation Toolbox™ - 生成三维环境的占用图。

  • Stateflow® - 调度示例中的高级任务并按顺序执行。

  • Computer Vision Toolbox™ - 处理三维点云数据。

  • Deep Learning Toolbox™ - 使用 Gazebo 中的模拟摄像头检测物体。

  • Computer Vision Toolbox™ Model for YOLO v4 Object Detection - 提供预训练的 YOLO v4 csp-darknet53-coco 物体检测网络。

要使用预训练的 YOLO v4 csp-darknet53-coco 物体检测网络,您必须从附加组件资源管理器下载并安装用于 YOLO v4 物体检测的 Computer Vision Toolbox™ Model。有关安装附加组件的更多信息,请参阅获取和管理附加组件。

本示例中的板条箱模型版权归 Arturo Matheus 所有,采用 1.3 版自由艺术许可协议进行许可。原始板条箱模型可在 sweethome3d 上获取。


一、设置 Gazebo 仿真环境

请按照以下步骤设置仿真环境。

  1. 要下载带有 Gazebo 的虚拟机 (VM),请按照在 Simulink 和 Gazebo 之间执行协同仿真中的说明操作。

  2. 在虚拟机设置中,在虚拟机 > 设置 > 硬件 > 显示下,禁用加速 3D 图形。有关更多信息,请参阅准备虚拟机以使用加速 3D 图形。

  3. 启动 Ubuntu® 虚拟机桌面。

  4. 在 Ubuntu 桌面上,单击 Gazebo Co-Sim Fruit Picking 启动本例的 Gazebo 世界。

二、在 Gazebo 中模拟和控制机器人

本示例使用 Gazebo 协同仿真 Simulink 模块来连接、读取摄像头图像以及读取和设置关节位置。Gazebo 世界包含一个带有 RGB-D 深度(RGB-D)摄像头传感器的 Universal Robotics UR10 机械臂机器人模型。Gazebo 世界还包含一棵苹果树和一个收集苹果的箱子。

2.1 概述

模拟开始时,机械手处于原点配置。然后,机械手移动到图像抓取位置,从 Gazebo 收集 RGB-D 图像。当机器人接收到图像时,它会使用 YOLO v4 物体检测网络检测并识别苹果。然后,机器人计算出目标位置,并将其发送给运动规划子系统。然后,模型使用操纵器RRT 对象在图像抓取位置和计算出的目标位置之间进行运动规划。当机器人接近目标苹果时,抓手手指张开,当机器人摘到苹果后,抓手手指关闭。然后,模型规划目标位置和苹果下落位置之间的运动。然后,机械手向苹果下落位置移动,并打开抓手,将苹果放入箱子中。接着,机械手移回图像抓取位置。这个过程一直持续到机器人从树上取下所有苹果为止。

在这里插入图片描述

Simulink 模型

在这里插入图片描述

Simulink 模型由这些子系统组成。

  • 任务调度器

  • 感知和目标生成系统

  • 运动规划

  • 抓手和关节控制系统

2.2 任务调度器

状态流程图定义了机器人手臂在取放工作流程中的不同状态。该图包含以下步骤。

  1. 最初,闲置状态(IdleState)触发并过渡到原点状态(HomeState)。

  2. 在 HomeState 状态下,当前配置通过运动规划过渡到图像抓取配置。

  3. 当 HomeState 结束时,它会触发 PerceptionState,捕捉 RGB-D 图像并过渡到 GrabState。

  4. 为了让机械手向目标移动,GrabState 会计算目标苹果的位置并执行运动规划。

  5. 机械手在向目标移动时打开抓手,到达目标后开始关闭抓手。

  6. 当 GrabState 结束时,抓手关闭以抓取苹果。

  7. 然后,ReleaseState 计划目标位置和苹果下落位置之间的运动。

  8. 机械手在到达苹果下落位置后,打开抓手并释放苹果。

  9. 机械手回到原点状态,从树上摘下一个苹果。

  10. 这个过程一直持续到机械手从树上摘下所有苹果为止。

在这里插入图片描述

2.3 感知和目标生成系统

感知系统模块和目标生成系统模块通过 Gazebo 读取模块从 Gazebo 中查询 RGB-D 图像,并通过接收到的 RGB-D 图像检测目标苹果生成目标姿态。

在这里插入图片描述

感知系统使用深度学习对象检测器(计算机视觉工具箱)模块,从输入的 RGB 图像中估计边界框和标签。子系统对标签进行细化,只选择苹果标签。感知系统从所有检测到的苹果标签列表中选择第一个苹果标签作为目标苹果,并通过输入的深度图像计算三维目标姿态。此外,子系统还会根据输入的深度图像计算运动规划中所需的点云。

在这里插入图片描述

2.4 运动规划

感知和目标生成器系统会生成目标姿态,并将其发送至目标配置生成器模块,以生成目标关节配置。获取目标姿势模块利用机械手的基准位置、末端执行器偏移和当前状态输入计算目标姿势。然后,逆运动学程序块根据计算出的目标姿势、权重和初始猜测计算出目标关节配置。

在这里插入图片描述

运动规划模块从 Gazebo 中获取当前关节配置,并使用操纵器RRT 对象进行运动规划。此外,子系统还会使用 occupancyMap3D(导航工具箱)对象为计算出的点云生成三维占位图。为了避免 Gazebo 世界中复杂的树形结构,子系统将该占用图作为运动规划的输入之一。最后,子系统根据运动规划中计算出的航点来估算关节位置。

在这里插入图片描述

2.5 机械臂和关节控制系统

Gazebo 应用命令块将估算的关节位置应用到 Gazebo 模型中。Gazebo 读取模块从 Gazebo 中获取当前的关节位置。抓手控制器模块使用 Gazebo 应用命令块对每个抓手手指关节施加扭矩。此外,任务调度程序中的状态转换会计算关节差,并利用关节差执行状态转换。

在这里插入图片描述

三、分配用于控制机器人的参数

打开 Simulink 模型。

open_system("FruitPickingGazeboManipulator.slx");

3.1 定义机器人模型和运动规划参数,

使用 loadrobot 对 universalUR10 机械手进行加载和可视化。

robot = loadrobot("universalUR10",DataFormat="row",Gravity=[0 0 -9.81]);
show(robot)

在这里插入图片描述

ans = Axes (Primary) with properties:XLim: [-2 2]YLim: [-2 2]XScale: 'linear'YScale: 'linear'GridLineStyle: '-'Position: [0.1300 0.1100 0.7750 0.8150]Units: 'normalized'Show all properties

在 Gazebo 世界中,RGB-D 摄像机和抓手连接到 Universal Robotics UR10 机器人模型的手腕_3_link 上。因此,请指定 wrist_3_link 为末端执行器。

endEffectorName = "wrist_3_link";

为 universalUR10 机器人模型指定所附抓手偏移量。

endEffectorOffset = [0.0 -0.27 0.0];

初始化运动规划参数

initializeMotionPlanningParameters

3.2 定义机械手姿势和摄像机参数

加载要在 Gazebo 模拟器中应用的相机设置。

initializeCameraParameters

要抓取图像,请定义 universalUR10 机器人移动到的位置。

imageGrabPositionTform = eye(4);
imageGrabPositionTform(1:3,4) = [0.1639 -0.6120 0.5839];
imageGrabPositionTform(1:3,1:3) = eul2rotm([0 0 0]);

定义机械手图像抓取位置的初始猜测配置。

imageGrabPositionInitialGuess = [-pi/2 0 -pi/2 pi/2 -pi/2 pi];

定义采摘苹果的下落位置。

releasePositionInitialTform = eye(4);
releasePositionInitialTform(1:3,4) = [-0.1348 -0.5613 0.3530];
releasePositionInitialTform(1:3,1:3) = eul2rotm([5*pi/6 0 -5*pi/6]);

定义机械手目标释放位置的初始猜测配置。

releasePositionInitialGuess = [-2*pi/3 -pi/2 2*pi/3 -pi/3 -pi/2 0];

3.3 配置 Gazebo 协同仿真设置

定义 Gazebo 协同模拟模块的采样时间。

Ts = 0.01;

打开 Gazebo Pacer 块,点击配置 Gazebo 网络和模拟设置链接。在网络地址下拉菜单中,选择自定义。输入 Linux 机器的 IP 地址。Gazebo 的默认端口值是 14581。将响应超时设置为 10。

在这里插入图片描述

单击 "测试 "按钮,测试与运行中的 Gazebo 模拟器的连接。

3.4 定义夹具控制设置

分配机械手开合力度值。

gripperOpenEffort = -0.15;
gripperCloseEffort = 0.15;

4. Simulink 模型

要执行模拟并将其可视化,请单击 “运行”。

在这里插入图片描述

在 MATLAB 中可视化检测到的苹果和深度图像。

在这里插入图片描述

这篇关于MATLAB - Gazebo 联合仿真 —— 使用 UR10 机械臂检测和采摘水果的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/357433

相关文章

Spring IoC 容器的使用详解(最新整理)

《SpringIoC容器的使用详解(最新整理)》文章介绍了Spring框架中的应用分层思想与IoC容器原理,通过分层解耦业务逻辑、数据访问等模块,IoC容器利用@Component注解管理Bean... 目录1. 应用分层2. IoC 的介绍3. IoC 容器的使用3.1. bean 的存储3.2. 方法注

Python内置函数之classmethod函数使用详解

《Python内置函数之classmethod函数使用详解》:本文主要介绍Python内置函数之classmethod函数使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 类方法定义与基本语法2. 类方法 vs 实例方法 vs 静态方法3. 核心特性与用法(1编程客

从入门到精通MySQL联合查询

《从入门到精通MySQL联合查询》:本文主要介绍从入门到精通MySQL联合查询,本文通过实例代码给大家介绍的非常详细,需要的朋友可以参考下... 目录摘要1. 多表联合查询时mysql内部原理2. 内连接3. 外连接4. 自连接5. 子查询6. 合并查询7. 插入查询结果摘要前面我们学习了数据库设计时要满

Linux中压缩、网络传输与系统监控工具的使用完整指南

《Linux中压缩、网络传输与系统监控工具的使用完整指南》在Linux系统管理中,压缩与传输工具是数据备份和远程协作的桥梁,而系统监控工具则是保障服务器稳定运行的眼睛,下面小编就来和大家详细介绍一下它... 目录引言一、压缩与解压:数据存储与传输的优化核心1. zip/unzip:通用压缩格式的便捷操作2.

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四

Go语言数据库编程GORM 的基本使用详解

《Go语言数据库编程GORM的基本使用详解》GORM是Go语言流行的ORM框架,封装database/sql,支持自动迁移、关联、事务等,提供CRUD、条件查询、钩子函数、日志等功能,简化数据库操作... 目录一、安装与初始化1. 安装 GORM 及数据库驱动2. 建立数据库连接二、定义模型结构体三、自动迁

ModelMapper基本使用和常见场景示例详解

《ModelMapper基本使用和常见场景示例详解》ModelMapper是Java对象映射库,支持自动映射、自定义规则、集合转换及高级配置(如匹配策略、转换器),可集成SpringBoot,减少样板... 目录1. 添加依赖2. 基本用法示例:简单对象映射3. 自定义映射规则4. 集合映射5. 高级配置匹

Spring 框架之Springfox使用详解

《Spring框架之Springfox使用详解》Springfox是Spring框架的API文档工具,集成Swagger规范,自动生成文档并支持多语言/版本,模块化设计便于扩展,但存在版本兼容性、性... 目录核心功能工作原理模块化设计使用示例注意事项优缺点优点缺点总结适用场景建议总结Springfox 是

嵌入式数据库SQLite 3配置使用讲解

《嵌入式数据库SQLite3配置使用讲解》本文强调嵌入式项目中SQLite3数据库的重要性,因其零配置、轻量级、跨平台及事务处理特性,可保障数据溯源与责任明确,详细讲解安装配置、基础语法及SQLit... 目录0、惨痛教训1、SQLite3环境配置(1)、下载安装SQLite库(2)、解压下载的文件(3)、