数学建模学习(4):TOPSIS 综合评价模型及编程实战

2023-11-06 14:59

本文主要是介绍数学建模学习(4):TOPSIS 综合评价模型及编程实战,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、数据总览

        需求:我们需要对各个银行进行评价,A-G为银行的各个指标,下面是银行的数据:

 二、代码逐行实现

清空代码和变量的指令

clear;clc;

层次分析法

每一行代表一个对象的指标评分

p = [8,7,6,8;7,8,8,7];%每一行代表一个对象的指标评分

A为自己构造的输入判别矩阵

%A为自己构造的输入判别矩阵
A=[1,3,1,1/3;1/3,1,1/2,1/5;1,2,1,1/3;3,5,3,1];

求特征值特征向量,找到最大特征值对应的特征向量

%%
[n,m]=size(A);
%求特征值特征向量,找到最大特征值对应的特征向量
[V,D]=eig(A);    %求特征值和特征向量  D记录特征值  V代表特征向量
%%

 找到最大的特征值

tzz=max(max(D));     %找到最大的特征值

 找到最大的特征值位置

c1=find(max(D)==tzz);%找到最大的特征值位置

最大特征值对应的特征向量

tzx=V(:,c1);%最大特征值对应的特征向量

 计算权重

quan1 = tzx/sum(tzx);
%%
%赋权重
quan=zeros(n,1);
for i=1:nquan(i,1)=tzx(i,1)/sum(tzx);
end

 一致性检验

Q=quan;
%一致性检验
CI=(tzz-n)/(n-1);
RI=[0,0,0.58,0.9,1.12,1.24,1.32,1.41,1.45,1.49,1.52,1.54,1.56,1.58,1.59];
%判断是否通过一致性检验
CR=CI/RI(1,n);
if CR>=0.1fprintf('没有通过一致性检验\n');
elsefprintf('通过一致性检验\n');
end

 显示出所有评分对象的评分值

%显示出所有评分对象的评分值score=P*Q;for i=1:length(score)name=['object_score',num2str(i)];eval([name,'=score(i)'])end

 Topsis层次分析法

待评价的数据

data=[220	6	30	10	10	5
190	8	25	9	8	3
180	8	28	7	7	4
170	7	23	8	7	2];

 负向指标准化处理
 

%负向指标准化处理index=3;for i=1:length(index)data1(:,index(i))=(max(data(:,index(i)))-data(:,index(i)))/(max(data(:,index(i)))-min(data(:,index(i))));
end

 正向指标的标准化处理

%%
%%正向指标准化处理
index_all=1:size(data1,2); 
index_all(index)=[];    % 除负向指标外其余所有指标
index=index_all;
%%
for i=1:length(index)data1(:,index(i))=(data(:,index(i))-min(data(:,index(i))))/(max(data(:,index(i)))-min(data(:,index(i))));
end

 标准化处理

%%标准化处理data1=zscore(data);
% for j=1:size(data1,2)
%     data1(:,j)= data(:,j)./sqrt(sum(data(:,j).^2));
% end

 得到加权后的数据

%得到加权重后的数据
w=[0.3724, 0.1003,0.1991, 0.1991,0.0998,0.0485]; %使用求权重的方法求得
R=data1.*w;

 得到最大值和最小值距离

%得到最大值和最小值距离
r_max=max(R);  %每个指标的最大值
r_min=min(R);  %每个指标的最小值
d_z = sqrt(sum([(R -repmat(r_max,size(R,1),1)).^2 ],2)) ;  %d+向量
d_f = sqrt(sum([(R -repmat(r_min,size(R,1),1)).^2 ],2)); %d-向量  
%sum(data,2)对行求和 ,sum(data)默认对列求和

 得到得分

%得到得分
s=d_f./(d_z+d_f );
Score=100*s/max(s);
for i=1:length(Score)fprintf('第%d个投标者百分制评分为:%d\n',i,Score(i));   
end

三、代码整体实现

        下面是matlab实现层次分析法和Topsis综合评价法的代码:

%% 层次分析法
clear;clc;
P=[8,7,6,8;7,8,8,7];%每一行代表一个对象的指标评分
%%
%A为自己构造的输入判别矩阵
A=[1,3,1,1/3;1/3,1,1/2,1/5;1,2,1,1/3;3,5,3,1];
%%
[n,m]=size(A);
%求特征值特征向量,找到最大特征值对应的特征向量
[V,D]=eig(A);    %求特征值和特征向量  D记录特征值  V代表特征向量
%%
tzz=max(max(D));     %找到最大的特征值
%%
c1=find(max(D)==tzz);%找到最大的特征值位置
%%
tzx=V(:,c1);%最大特征值对应的特征向量
%%
quan1 = tzx/sum(tzx);
%%
%赋权重
quan=zeros(n,1);
for i=1:nquan(i,1)=tzx(i,1)/sum(tzx);
end
%%
%%%
Q=quan;
%一致性检验
CI=(tzz-n)/(n-1);
RI=[0,0,0.58,0.9,1.12,1.24,1.32,1.41,1.45,1.49,1.52,1.54,1.56,1.58,1.59];
%判断是否通过一致性检验
CR=CI/RI(1,n);
if CR>=0.1fprintf('没有通过一致性检验\n');
elsefprintf('通过一致性检验\n');
end
%%
%显示出所有评分对象的评分值score=P*Q;for i=1:length(score)name=['object_score',num2str(i)];eval([name,'=score(i)'])end%%  TOPSISclc;clear;%%
data=[220	6	30	10	10	5
190	8	25	9	8	3
180	8	28	7	7	4
170	7	23	8	7	2];
%%index=3;for i=1:length(index)data1(:,index(i))=(max(data(:,index(i)))-data(:,index(i)))/(max(data(:,index(i)))-min(data(:,index(i))));
end
%%
%%正向指标准化处理
index_all=1:size(data1,2); 
index_all(index)=[];    % 除负向指标外其余所有指标
index=index_all;
for i=1:length(index)data1(:,index(i))=(data(:,index(i))-min(data(:,index(i))))/(max(data(:,index(i)))-min(data(:,index(i))));
enddata1=zscore(data);
% for j=1:size(data1,2)
%     data1(:,j)= data(:,j)./sqrt(sum(data(:,j).^2));
% end%得到加权重后的数据
w=[0.3724, 0.1003,0.1991, 0.1991,0.0998,0.0485]; %使用求权重的方法求得
R=data1.*w;%得到最大值和最小值距离
r_max=max(R);  %每个指标的最大值
r_min=min(R);  %每个指标的最小值
d_z = sqrt(sum([(R -repmat(r_max,size(R,1),1)).^2 ],2)) ;  %d+向量
d_f = sqrt(sum([(R -repmat(r_min,size(R,1),1)).^2 ],2)); %d-向量  
%sum(data,2)对行求和 ,sum(data)默认对列求和
%得到得分
s=d_f./(d_z+d_f );
Score=100*s/max(s);
for i=1:length(Score)fprintf('第%d个投标者百分制评分为:%d\n',i,Score(i));   
end

对应的原理公式,请跳转到下面的链接:

http://t.csdn.cn/HXaGB

这篇关于数学建模学习(4):TOPSIS 综合评价模型及编程实战的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/357318

相关文章

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

Java Spring 中的监听器Listener详解与实战教程

《JavaSpring中的监听器Listener详解与实战教程》Spring提供了多种监听器机制,可以用于监听应用生命周期、会话生命周期和请求处理过程中的事件,:本文主要介绍JavaSprin... 目录一、监听器的作用1.1 应用生命周期管理1.2 会话管理1.3 请求处理监控二、创建监听器2.1 Ser

Apache 高级配置实战之从连接保持到日志分析的完整指南

《Apache高级配置实战之从连接保持到日志分析的完整指南》本文带你从连接保持优化开始,一路走到访问控制和日志管理,最后用AWStats来分析网站数据,对Apache配置日志分析相关知识感兴趣的朋友... 目录Apache 高级配置实战:从连接保持到日志分析的完整指南前言 一、Apache 连接保持 - 性

SpringBoot整合Sa-Token实现RBAC权限模型的过程解析

《SpringBoot整合Sa-Token实现RBAC权限模型的过程解析》:本文主要介绍SpringBoot整合Sa-Token实现RBAC权限模型的过程解析,本文给大家介绍的非常详细,对大家的学... 目录前言一、基础概念1.1 RBAC模型核心概念1.2 Sa-Token核心功能1.3 环境准备二、表结

MQTT SpringBoot整合实战教程

《MQTTSpringBoot整合实战教程》:本文主要介绍MQTTSpringBoot整合实战教程,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录MQTT-SpringBoot创建简单 SpringBoot 项目导入必须依赖增加MQTT相关配置编写

JavaScript实战:智能密码生成器开发指南

本文通过JavaScript实战开发智能密码生成器,详解如何运用crypto.getRandomValues实现加密级随机密码生成,包含多字符组合、安全强度可视化、易混淆字符排除等企业级功能。学习密码强度检测算法与信息熵计算原理,获取可直接嵌入项目的完整代码,提升Web应用的安全开发能力 目录

Redis迷你版微信抢红包实战

《Redis迷你版微信抢红包实战》本文主要介绍了Redis迷你版微信抢红包实战... 目录1 思路分析1.1hCckRX 流程1.2 注意点①拆红包:二倍均值算法②发红包:list③抢红包&记录:hset2 代码实现2.1 拆红包splitRedPacket2.2 发红包sendRedPacket2.3 抢