【AI好好玩02】利用Lama Cleaner本地实现AIGC试玩:擦除对象、替换对象、更换风格等等

本文主要是介绍【AI好好玩02】利用Lama Cleaner本地实现AIGC试玩:擦除对象、替换对象、更换风格等等,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

      • 一、安装
      • 二、擦除功能
        • 1. LaMa模型
          • 实操实例一:去除路人
          • 实操实例二:去水印
          • 实操实例三:老照片修复
        • 2. LDM模型
        • 3. ZITS模型
        • 4. MAT模型
        • 5. FcF模型
        • 6. Manga模型
      • 三、替换对象功能
        • 1. sd1.5
        • 2. sd2
        • 3. anything4
        • 4. realisticVision1.4
        • 5. 四个模型的对比
      • 四、进阶版功能
        • 1. Paint By Example
        • 2. Stable Diffusion with ControlNet
        • 3. Instruct Pix2pix

Lama Cleaner是一个免费的、开源的、完全自托管的修复工具,里面提供了很多最前沿的AIGC模型。可以使用它从图片中删除任何不需要的物体、缺陷、人物,或删除和替换图片上的任何内容。本文章详细介绍了该工具的所有功能,并体验了下每个功能的实际效果

github:https://github.com/Sanster/lama-cleaner

官方使用文档:https://lama-cleaner-docs.vercel.app/

一、安装

# 如果电脑带GPU,为了使用GPU首先安装与cuda版本相对应的pytorch,比如cuda11.7的
pip install torch==1.13.1+cu117 torchvision==0.14.1 --extra-index-url https://download.pytorch.org/whl/cu117# pip直接安装
pip install lama-cleaner

本文安装时版本更新到1.2.4

二、擦除功能

下方擦除功能所需要的模型全部上传至夸克网盘(链接:https://pan.quark.cn/s/370b455924ab,提取码:SNrE),在github下载失败时可手动网盘下载至规定路径。

找到lama-cleaner.exe的路径:C:\Users\zhouying\AppData\Roaming\Python\Python39\Scripts(不同电脑路径不同)

cd C:\Users\zhouying\AppData\Roaming\Python\Python39\Scriptslama-cleaner --model=lama --device=cuda --port=8080

device如果没有gpu:--device=cpu

该命令会自动下载AI模型到本地(也可手动下载big-lama.pt到下图红框中的路径),然后浏览器打开http://localhost:8080/就可以使用了。
在这里插入图片描述

1. LaMa模型
  • github:https://github.com/saic-mdal/lama

  • paper:Resolution-robust Large Mask Inpainting with Fourier Convolutions

lama是默认模型,模型196MB,性能已经挺不错了。

实操实例一:去除路人

在这里插入图片描述

实操实例二:去水印

涂抹过程中可以长按Ctrl键进行多处涂抹
在这里插入图片描述
在这里插入图片描述

实操实例三:老照片修复

在这里插入图片描述


可以在网页中选择不同的AI模型或在命令行中选择不同模型(下方章节),这样都会自动下载相应的模型到本地。

在这里插入图片描述


2. LDM模型
  • github:https://github.com/CompVis/latent-diffusion

  • paper:High-Resolution Image Synthesis with Latent Diffusion Models

lama-cleaner --model=ldm --device=cuda --port=8080

LDM模型手动下载链接:diffusion.pt、cond_stage_model_decode.pt、cond_stage_model_encode.pt

在这里插入图片描述

LDM vs LaMa

  • 可能比LaMa有更好、更多的细节
  • 可以通过调整Steps来平衡时间和质量
  • 比LaMa慢很多(3080 12it/s)
  • 需要更多的GPU内存(512x512 5.8G)

在这里插入图片描述

3. ZITS模型
  • github:https://github.com/DQiaole/ZITS_inpainting

  • paper:Incremental Transformer Structure Enhanced Image Inpainting with Masking Positional Encoding

lama-cleaner --model=zits --device=cuda --port=8080

ZITS模型手动下载链接:zits-wireframe-0717.pt、zits-edge-line-0717.pt、zits-structure-upsample-0717.pt、zits-inpaint-0717.pt

ZITS vs LaMa

  • 擅长在高分辨弱纹理场景中恢复关键的边缘和线框
  • ZITS的Wireframe模块在CPU上会非常慢

在这里插入图片描述

4. MAT模型
  • github:https://github.com/fenglinglwb/MAT

  • paper:Mask-Aware Transformer for Large Hole Image Inpainting

lama-cleaner --model=mat --device=cuda --port=8080

MAT模型手动下载链接:Places_512_FullData_G.pth

特点:MAT可实现大面积像素缺失的补全和提供多样性生成

在这里插入图片描述

5. FcF模型
  • github:https://github.com/SHI-Labs/FcF-Inpainting

  • paper:Keys to Better Image Inpainting: Structure and Texture Go Hand in Hand

lama-cleaner --model=fcf --device=cuda --port=8080

FcF模型手动下载链接:places_512_G.pth

FcF vs LaMa

  • 能生成更好的结构和纹理
  • 仅支持固定大小(512x512)的输入

在这里插入图片描述

6. Manga模型
  • github:https://github.com/msxie92/MangaInpainting

  • paper:Seamless Manga Inpainting with Semantics Awareness

lama-cleaner --model=manga --device=cuda --port=8080

Manga模型手动下载链接:erika.jit、manga_inpaintor.jit

特点:在漫画图像上表现的比LaMa模型效果更好

在这里插入图片描述

三、替换对象功能

1. sd1.5

github:https://github.com/runwayml/stable-diffusion

hugging face:https://huggingface.co/runwayml/stable-diffusion-inpainting

因为需要访问hugging face,所以需要魔法

  • 运行方式一:
lama-cleaner --model=sd1.5 --device=cuda --port=8080

自动下载的文件保存路径为C:\Users\zhouying\.cache\huggingface\hub\models--runwayml--stable-diffusion-inpainting

在这里插入图片描述

  • 运行方式二:

可以先下载sd-v1-5-inpainting.ckpt到本地,然后下面的命令运行

lama-cleaner --model=sd1.5 --device=cuda --port=8080 --sd-local-model-path ./sd-v1-5-inpainting.ckpt --local-files-only
2. sd2

github:https://github.com/Stability-AI/stablediffusion

hugging face:https://huggingface.co/stabilityai/stable-diffusion-2-inpainting

lama-cleaner --model=sd2 --device=cuda --port=8080

下载的文件保存在C:\Users\zhouying\.cache\huggingface\hub\models--stabilityai--stable-diffusion-2-inpainting

3. anything4

hugging face: https://huggingface.co/andite/anything-v4.0

lama-cleaner --model=anything4 --device=cuda --port=8080

下载的文件保存在C:\Users\zhouying\.cache\huggingface\hub\models--Sanster--anything-4.0-inpainting

4. realisticVision1.4

hugging face:https://huggingface.co/SG161222/Realistic_Vision_V1.4

lama-cleaner --model=realisticVision1.4 --device=cuda --port=8080

下载的文件保存在C:\Users\zhouying\.cache\huggingface\hub\models--Sanster--Realistic_Vision_V1.4-inpainting

5. 四个模型的对比

原图:

在这里插入图片描述

涂抹图中小狗,然后prompt输入“a fox sitting on a bench”的输出如下:

在这里插入图片描述

同时,这些模型同样能提供擦除功能,只需将prompt填写为“background”

四、进阶版功能

1. Paint By Example

这个模型的输入是一张图片,模型会由这个示例图指导生成类似的内容。

github:https://github.com/Fantasy-Studio/Paint-by-Example

paper:Paint by Example: Exemplar-based Image Editing with Diffusion Models

lama-cleaner --model=paint_by_example --device=cuda --port=8080

下载的文件保存在C:\Users\zhouying\.cache\huggingface\hub\models--Fantasy-Studio--Paint-by-Example

在这里插入图片描述

2. Stable Diffusion with ControlNet

使用ControlNet可以获得更好的修复效果,命令如下:

lama-cleaner --model=sd1.5 --sd-controlnet --sd-controlnet-method control_v11p_sd15_inpaint --device=cuda --port=8080

--model支持的参数有:

  • sd1.5
  • anything4
  • realisticVision1.4

--sd-controlnet-method支持的参数有:

  • control_v11p_sd15_canny
  • control_v11p_sd15_openpose
  • control_v11p_sd15_inpaint
  • control_v11f1p_sd15_depth

官方提示,这四种方法在应用时都需要适当地调整ControlNet Weight的数值,建议canny和openpose从0.4开始调整,inpaint和depth从1.0开始调整。

尝试了一下,加了个ControlNet也没好多少,可能weight值还没调好。

在这里插入图片描述

3. Instruct Pix2pix

这个模型可以不用mask,而是直接输入prompt

github:https://github.com/timothybrooks/instruct-pix2pix

paper:InstructPix2Pix: Learning to Follow Image Editing Instructions

lama-cleaner --model=instruct_pix2pix --device=cuda --port=8080

在这里插入图片描述

拿张图试玩一下,效果挺不错的。

在这里插入图片描述

在这里插入图片描述

这篇关于【AI好好玩02】利用Lama Cleaner本地实现AIGC试玩:擦除对象、替换对象、更换风格等等的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/355256

相关文章

分布式锁在Spring Boot应用中的实现过程

《分布式锁在SpringBoot应用中的实现过程》文章介绍在SpringBoot中通过自定义Lock注解、LockAspect切面和RedisLockUtils工具类实现分布式锁,确保多实例并发操作... 目录Lock注解LockASPect切面RedisLockUtils工具类总结在现代微服务架构中,分布

Java使用Thumbnailator库实现图片处理与压缩功能

《Java使用Thumbnailator库实现图片处理与压缩功能》Thumbnailator是高性能Java图像处理库,支持缩放、旋转、水印添加、裁剪及格式转换,提供易用API和性能优化,适合Web应... 目录1. 图片处理库Thumbnailator介绍2. 基本和指定大小图片缩放功能2.1 图片缩放的

精选20个好玩又实用的的Python实战项目(有图文代码)

《精选20个好玩又实用的的Python实战项目(有图文代码)》文章介绍了20个实用Python项目,涵盖游戏开发、工具应用、图像处理、机器学习等,使用Tkinter、PIL、OpenCV、Kivy等库... 目录① 猜字游戏② 闹钟③ 骰子模拟器④ 二维码⑤ 语言检测⑥ 加密和解密⑦ URL缩短⑧ 音乐播放

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

PyCharm中配置PyQt的实现步骤

《PyCharm中配置PyQt的实现步骤》PyCharm是JetBrains推出的一款强大的PythonIDE,结合PyQt可以进行pythion高效开发桌面GUI应用程序,本文就来介绍一下PyCha... 目录1. 安装China编程PyQt1.PyQt 核心组件2. 基础 PyQt 应用程序结构3. 使用 Q