Deepgreen与Greenplum TPC-H性能测试对比(使用德哥脚本)

2023-11-06 04:50

本文主要是介绍Deepgreen与Greenplum TPC-H性能测试对比(使用德哥脚本),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Deepgreen数据库基于开源MPP数据库Greenplum而来,那么他的优越性几何?今天给大家分享数据仓库测试TPC-H的结果让大家加以比较:
本次对比需要注意的几点:
  1. 测试参照德哥2015年发的【Greenplum的TPC-H】测试,只做了压缩类型的简单修改
  2. 由于测试机器性能问题,可能无法最大化展示二者性能(greenplum部分测试timeout)
一、测试环境:

服务器         IP              节点
Master          192.168.100.107 1 Master
Segment1        192.168.100.108 2 instance
Segment2        192.168.100.109 2 instance
软件版本:
Greenplum 4.3.12
Deepgreen 16.16
二、TPC-H测试结果
Greenplum:
 
2017-05-19 13:59:16 [1495173556] : preparing TPC-H database
2017-05-19 13:59:16 [1495173556] :   loading data
2017-05-19 13:59:39 [1495173579] :   creating primary keys
2017-05-19 13:59:39 [1495173579] :   creating foreign keys
2017-05-19 13:59:39 [1495173579] :   creating indexes
2017-05-19 13:59:57 [1495173597] :   analyzing
2017-05-19 14:00:10 [1495173610] : running TPC-H benchmark
2017-05-19 14:00:10 [1495173610] : running queries defined in TPC-H benchmark
2017-05-19 14:00:10 [1495173610] :   running query 1
2017-05-19 14:00:21 [1495173621] :     query 1 finished OK (6 seconds)
2017-05-19 14:00:21 [1495173621] :   running query 2
2017-05-19 14:08:37 [1495174117] :     query 2 finished OK (250 seconds)
2017-05-19 14:08:37 [1495174117] :   running query 3
2017-05-19 14:53:15 [1495176795] :     query 3 finished OK (1363 seconds)
2017-05-19 14:53:15 [1495176795] :   running query 4
2017-05-19 14:53:17 [1495176797] :     query 4 finished OK (1 seconds)
2017-05-19 14:53:17 [1495176797] :   running query 5
2017-05-19 14:53:18 [1495176798] :     query 5 finished OK (1 seconds)
2017-05-19 14:53:18 [1495176798] :   running query 6
2017-05-19 14:53:19 [1495176799] :     query 6 finished OK (1 seconds)
2017-05-19 14:53:19 [1495176799] :   running query 7
2017-05-19 15:28:32 [1495178912] :     query 7 finished OK (1057 seconds)
2017-05-19 15:28:32 [1495178912] :   running query 8
2017-05-19 15:54:09 [1495180449] :     query 8 finished OK (777 seconds)
2017-05-19 15:54:09 [1495180449] :   running query 9
2017-05-19 21:52:26 [1495201946] :     killing query 9 (timeout)
2017-05-19 21:52:36 [1495201956] :   running query 10
2017-05-19 21:52:37 [1495201957] :     query 10 finished OK (1 seconds)
2017-05-19 21:52:37 [1495201957] :   running query 11
2017-05-19 21:55:26 [1495202126] :     query 11 finished OK (85 seconds)
2017-05-19 21:55:26 [1495202126] :   running query 12
2017-05-19 21:55:27 [1495202127] :     query 12 finished OK (1 seconds)
2017-05-19 21:55:27 [1495202127] :   running query 13
2017-05-20 00:45:29 [1495212329] :     killing query 13 (timeout)
2017-05-20 00:45:39 [1495212339] :   running query 14
2017-05-20 00:45:40 [1495212340] :     query 14 finished OK (1 seconds)
2017-05-20 00:45:40 [1495212340] :   running query 15
2017-05-20 00:45:42 [1495212342] :     query 15 finished OK (1 seconds)
2017-05-20 00:45:42 [1495212342] :   running query 16
2017-05-20 00:48:30 [1495212510] :     query 16 finished OK (84 seconds)
2017-05-20 00:48:30 [1495212510] :   running query 17
2017-05-20 00:48:46 [1495212526] :     query 17 finished OK (8 seconds)
2017-05-20 00:48:46 [1495212526] :   running query 18
2017-05-20 02:06:47 [1495217207] :     killing query 18 (timeout)
2017-05-20 02:06:58 [1495217218] :   running query 19
2017-05-20 07:11:50 [1495235510] :     killing query 19 (timeout)
2017-05-20 07:12:00 [1495235520] :   running query 20
2017-05-20 07:12:02 [1495235522] :     query 20 finished OK (1 seconds)
2017-05-20 07:12:02 [1495235522] :   running query 21
2017-05-20 09:57:36 [1495245456] :     killing query 21 (timeout)
2017-05-20 09:57:46 [1495245466] :   running query 22
2017-05-20 10:12:01 [1495246321] :     query 22 finished OK (428 seconds)
2017-05-20 10:12:01 [1495246321] : finished TPC-H benchmark
Deepgreen:

[dgadmin@linux1 results]$ cat bench.log
2017-05-19 11:44:56 [1495165496] : preparing TPC-H database
2017-05-19 11:44:56 [1495165496] :   loading data
2017-05-19 11:45:14 [1495165514] :   creating primary keys
2017-05-19 11:45:14 [1495165514] :   creating foreign keys
2017-05-19 11:45:14 [1495165514] :   creating indexes
2017-05-19 11:45:29 [1495165529] :   analyzing
2017-05-19 11:45:32 [1495165532] : running TPC-H benchmark
2017-05-19 11:45:32 [1495165532] : running queries defined in TPC-H benchmark
2017-05-19 11:45:32 [1495165532] :   running query 1
2017-05-19 11:45:40 [1495165540] :     query 1 finished OK (4 seconds)
2017-05-19 11:45:40 [1495165540] :   running query 2
2017-05-19 11:52:23 [1495165943] :     query 2 finished OK (199 seconds)
2017-05-19 11:52:23 [1495165943] :   running query 3
2017-05-19 11:52:27 [1495165947] :     query 3 finished OK (3 seconds)
2017-05-19 11:52:27 [1495165947] :   running query 4
2017-05-19 11:52:28 [1495165948] :     query 4 finished OK (1 seconds)
2017-05-19 11:52:28 [1495165948] :   running query 5
2017-05-19 11:52:29 [1495165949] :     query 5 finished OK (1 seconds)
2017-05-19 11:52:29 [1495165949] :   running query 6
2017-05-19 11:52:30 [1495165950] :     query 6 finished OK (1 seconds)
2017-05-19 11:52:30 [1495165950] :   running query 7
2017-05-19 11:52:34 [1495165954] :     query 7 finished OK (3 seconds)
2017-05-19 11:52:34 [1495165954] :   running query 8
2017-05-19 11:52:36 [1495165956] :     query 8 finished OK (1 seconds)
2017-05-19 11:52:36 [1495165956] :   running query 9
2017-05-19 12:26:01 [1495167961] :     query 9 finished OK (1002 seconds)
2017-05-19 12:26:01 [1495167961] :   running query 10
2017-05-19 12:26:02 [1495167962] :     query 10 finished OK (1 seconds)
2017-05-19 12:26:02 [1495167962] :   running query 11
2017-05-19 12:26:05 [1495167965] :     query 11 finished OK (3 seconds)
2017-05-19 12:26:05 [1495167965] :   running query 12
2017-05-19 12:26:07 [1495167967] :     query 12 finished OK (1 seconds)
2017-05-19 12:26:07 [1495167967] :   running query 13
2017-05-19 12:45:19 [1495169119] :     query 13 finished OK (588 seconds)
2017-05-19 12:45:19 [1495169119] :   running query 14
2017-05-19 12:45:20 [1495169120] :     query 14 finished OK (1 seconds)
2017-05-19 12:45:20 [1495169120] :   running query 15
2017-05-19 12:45:21 [1495169121] :     query 15 finished OK (1 seconds)
2017-05-19 12:45:21 [1495169121] :   running query 16
2017-05-19 12:45:25 [1495169125] :     query 16 finished OK (3 seconds)
2017-05-19 12:45:25 [1495169125] :   running query 17
2017-05-19 12:45:30 [1495169130] :     query 17 finished OK (3 seconds)
2017-05-19 12:45:30 [1495169130] :   running query 18
2017-05-19 12:45:32 [1495169132] :     query 18 finished OK (1 seconds)
2017-05-19 12:45:32 [1495169132] :   running query 19
2017-05-19 12:45:34 [1495169134] :     query 19 finished OK (1 seconds)
2017-05-19 12:45:34 [1495169134] :   running query 20
2017-05-19 12:45:35 [1495169135] :     query 20 finished OK (1 seconds)
2017-05-19 12:45:35 [1495169135] :   running query 21
2017-05-19 12:45:36 [1495169136] :     query 21 finished OK (1 seconds)
2017-05-19 12:45:36 [1495169136] :   running query 22
2017-05-19 12:57:30 [1495169850] :     query 22 finished OK (357 seconds)
2017-05-19 12:57:30 [1495169850] : finished TPC-H benchmark

三、结果对比

总的来说,Deepgreen在整个测试中整体优于Greenplum。在22轮测试中,有8轮持平,其余14轮Deepgreen均优于Greenplum。其中Q3、Q7、Q8、Q11、Q16查询比Greenplum快指数倍;Greenplum的Q9、Q13、Q18、Q19、Q21 timeout,而Deepgreen没有;Q4、Q5、Q6、Q10、Q12、Q14、Q15、Q20二者持平。
d2bd8ac17549d3ce91d384d6422c844b068e30cc
8a9741c119a601992c790d88ecb6ce0f0595629b

这篇关于Deepgreen与Greenplum TPC-H性能测试对比(使用德哥脚本)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/354562

相关文章

使用Python开发一个Ditto剪贴板数据导出工具

《使用Python开发一个Ditto剪贴板数据导出工具》在日常工作中,我们经常需要处理大量的剪贴板数据,下面将介绍如何使用Python的wxPython库开发一个图形化工具,实现从Ditto数据库中读... 目录前言运行结果项目需求分析技术选型核心功能实现1. Ditto数据库结构分析2. 数据库自动定位3

Python yield与yield from的简单使用方式

《Pythonyield与yieldfrom的简单使用方式》生成器通过yield定义,可在处理I/O时暂停执行并返回部分结果,待其他任务完成后继续,yieldfrom用于将一个生成器的值传递给另一... 目录python yield与yield from的使用代码结构总结Python yield与yield

Go语言使用select监听多个channel的示例详解

《Go语言使用select监听多个channel的示例详解》本文将聚焦Go并发中的一个强力工具,select,这篇文章将通过实际案例学习如何优雅地监听多个Channel,实现多任务处理、超时控制和非阻... 目录一、前言:为什么要使用select二、实战目标三、案例代码:监听两个任务结果和超时四、运行示例五

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl

shell脚本批量导出redis key-value方式

《shell脚本批量导出rediskey-value方式》为避免keys全量扫描导致Redis卡顿,可先通过dump.rdb备份文件在本地恢复,再使用scan命令渐进导出key-value,通过CN... 目录1 背景2 详细步骤2.1 本地docker启动Redis2.2 shell批量导出脚本3 附录总

Java使用Thumbnailator库实现图片处理与压缩功能

《Java使用Thumbnailator库实现图片处理与压缩功能》Thumbnailator是高性能Java图像处理库,支持缩放、旋转、水印添加、裁剪及格式转换,提供易用API和性能优化,适合Web应... 目录1. 图片处理库Thumbnailator介绍2. 基本和指定大小图片缩放功能2.1 图片缩放的

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

Oracle数据库定时备份脚本方式(Linux)

《Oracle数据库定时备份脚本方式(Linux)》文章介绍Oracle数据库自动备份方案,包含主机备份传输与备机解压导入流程,强调需提前全量删除原库数据避免报错,并需配置无密传输、定时任务及验证脚本... 目录说明主机脚本备机上自动导库脚本整个自动备份oracle数据库的过程(建议全程用root用户)总结

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3