Deepgreen与Greenplum TPC-H性能测试对比(使用德哥脚本)

2023-11-06 04:50

本文主要是介绍Deepgreen与Greenplum TPC-H性能测试对比(使用德哥脚本),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Deepgreen数据库基于开源MPP数据库Greenplum而来,那么他的优越性几何?今天给大家分享数据仓库测试TPC-H的结果让大家加以比较:
本次对比需要注意的几点:
  1. 测试参照德哥2015年发的【Greenplum的TPC-H】测试,只做了压缩类型的简单修改
  2. 由于测试机器性能问题,可能无法最大化展示二者性能(greenplum部分测试timeout)
一、测试环境:

服务器         IP              节点
Master          192.168.100.107 1 Master
Segment1        192.168.100.108 2 instance
Segment2        192.168.100.109 2 instance
软件版本:
Greenplum 4.3.12
Deepgreen 16.16
二、TPC-H测试结果
Greenplum:
 
2017-05-19 13:59:16 [1495173556] : preparing TPC-H database
2017-05-19 13:59:16 [1495173556] :   loading data
2017-05-19 13:59:39 [1495173579] :   creating primary keys
2017-05-19 13:59:39 [1495173579] :   creating foreign keys
2017-05-19 13:59:39 [1495173579] :   creating indexes
2017-05-19 13:59:57 [1495173597] :   analyzing
2017-05-19 14:00:10 [1495173610] : running TPC-H benchmark
2017-05-19 14:00:10 [1495173610] : running queries defined in TPC-H benchmark
2017-05-19 14:00:10 [1495173610] :   running query 1
2017-05-19 14:00:21 [1495173621] :     query 1 finished OK (6 seconds)
2017-05-19 14:00:21 [1495173621] :   running query 2
2017-05-19 14:08:37 [1495174117] :     query 2 finished OK (250 seconds)
2017-05-19 14:08:37 [1495174117] :   running query 3
2017-05-19 14:53:15 [1495176795] :     query 3 finished OK (1363 seconds)
2017-05-19 14:53:15 [1495176795] :   running query 4
2017-05-19 14:53:17 [1495176797] :     query 4 finished OK (1 seconds)
2017-05-19 14:53:17 [1495176797] :   running query 5
2017-05-19 14:53:18 [1495176798] :     query 5 finished OK (1 seconds)
2017-05-19 14:53:18 [1495176798] :   running query 6
2017-05-19 14:53:19 [1495176799] :     query 6 finished OK (1 seconds)
2017-05-19 14:53:19 [1495176799] :   running query 7
2017-05-19 15:28:32 [1495178912] :     query 7 finished OK (1057 seconds)
2017-05-19 15:28:32 [1495178912] :   running query 8
2017-05-19 15:54:09 [1495180449] :     query 8 finished OK (777 seconds)
2017-05-19 15:54:09 [1495180449] :   running query 9
2017-05-19 21:52:26 [1495201946] :     killing query 9 (timeout)
2017-05-19 21:52:36 [1495201956] :   running query 10
2017-05-19 21:52:37 [1495201957] :     query 10 finished OK (1 seconds)
2017-05-19 21:52:37 [1495201957] :   running query 11
2017-05-19 21:55:26 [1495202126] :     query 11 finished OK (85 seconds)
2017-05-19 21:55:26 [1495202126] :   running query 12
2017-05-19 21:55:27 [1495202127] :     query 12 finished OK (1 seconds)
2017-05-19 21:55:27 [1495202127] :   running query 13
2017-05-20 00:45:29 [1495212329] :     killing query 13 (timeout)
2017-05-20 00:45:39 [1495212339] :   running query 14
2017-05-20 00:45:40 [1495212340] :     query 14 finished OK (1 seconds)
2017-05-20 00:45:40 [1495212340] :   running query 15
2017-05-20 00:45:42 [1495212342] :     query 15 finished OK (1 seconds)
2017-05-20 00:45:42 [1495212342] :   running query 16
2017-05-20 00:48:30 [1495212510] :     query 16 finished OK (84 seconds)
2017-05-20 00:48:30 [1495212510] :   running query 17
2017-05-20 00:48:46 [1495212526] :     query 17 finished OK (8 seconds)
2017-05-20 00:48:46 [1495212526] :   running query 18
2017-05-20 02:06:47 [1495217207] :     killing query 18 (timeout)
2017-05-20 02:06:58 [1495217218] :   running query 19
2017-05-20 07:11:50 [1495235510] :     killing query 19 (timeout)
2017-05-20 07:12:00 [1495235520] :   running query 20
2017-05-20 07:12:02 [1495235522] :     query 20 finished OK (1 seconds)
2017-05-20 07:12:02 [1495235522] :   running query 21
2017-05-20 09:57:36 [1495245456] :     killing query 21 (timeout)
2017-05-20 09:57:46 [1495245466] :   running query 22
2017-05-20 10:12:01 [1495246321] :     query 22 finished OK (428 seconds)
2017-05-20 10:12:01 [1495246321] : finished TPC-H benchmark
Deepgreen:

[dgadmin@linux1 results]$ cat bench.log
2017-05-19 11:44:56 [1495165496] : preparing TPC-H database
2017-05-19 11:44:56 [1495165496] :   loading data
2017-05-19 11:45:14 [1495165514] :   creating primary keys
2017-05-19 11:45:14 [1495165514] :   creating foreign keys
2017-05-19 11:45:14 [1495165514] :   creating indexes
2017-05-19 11:45:29 [1495165529] :   analyzing
2017-05-19 11:45:32 [1495165532] : running TPC-H benchmark
2017-05-19 11:45:32 [1495165532] : running queries defined in TPC-H benchmark
2017-05-19 11:45:32 [1495165532] :   running query 1
2017-05-19 11:45:40 [1495165540] :     query 1 finished OK (4 seconds)
2017-05-19 11:45:40 [1495165540] :   running query 2
2017-05-19 11:52:23 [1495165943] :     query 2 finished OK (199 seconds)
2017-05-19 11:52:23 [1495165943] :   running query 3
2017-05-19 11:52:27 [1495165947] :     query 3 finished OK (3 seconds)
2017-05-19 11:52:27 [1495165947] :   running query 4
2017-05-19 11:52:28 [1495165948] :     query 4 finished OK (1 seconds)
2017-05-19 11:52:28 [1495165948] :   running query 5
2017-05-19 11:52:29 [1495165949] :     query 5 finished OK (1 seconds)
2017-05-19 11:52:29 [1495165949] :   running query 6
2017-05-19 11:52:30 [1495165950] :     query 6 finished OK (1 seconds)
2017-05-19 11:52:30 [1495165950] :   running query 7
2017-05-19 11:52:34 [1495165954] :     query 7 finished OK (3 seconds)
2017-05-19 11:52:34 [1495165954] :   running query 8
2017-05-19 11:52:36 [1495165956] :     query 8 finished OK (1 seconds)
2017-05-19 11:52:36 [1495165956] :   running query 9
2017-05-19 12:26:01 [1495167961] :     query 9 finished OK (1002 seconds)
2017-05-19 12:26:01 [1495167961] :   running query 10
2017-05-19 12:26:02 [1495167962] :     query 10 finished OK (1 seconds)
2017-05-19 12:26:02 [1495167962] :   running query 11
2017-05-19 12:26:05 [1495167965] :     query 11 finished OK (3 seconds)
2017-05-19 12:26:05 [1495167965] :   running query 12
2017-05-19 12:26:07 [1495167967] :     query 12 finished OK (1 seconds)
2017-05-19 12:26:07 [1495167967] :   running query 13
2017-05-19 12:45:19 [1495169119] :     query 13 finished OK (588 seconds)
2017-05-19 12:45:19 [1495169119] :   running query 14
2017-05-19 12:45:20 [1495169120] :     query 14 finished OK (1 seconds)
2017-05-19 12:45:20 [1495169120] :   running query 15
2017-05-19 12:45:21 [1495169121] :     query 15 finished OK (1 seconds)
2017-05-19 12:45:21 [1495169121] :   running query 16
2017-05-19 12:45:25 [1495169125] :     query 16 finished OK (3 seconds)
2017-05-19 12:45:25 [1495169125] :   running query 17
2017-05-19 12:45:30 [1495169130] :     query 17 finished OK (3 seconds)
2017-05-19 12:45:30 [1495169130] :   running query 18
2017-05-19 12:45:32 [1495169132] :     query 18 finished OK (1 seconds)
2017-05-19 12:45:32 [1495169132] :   running query 19
2017-05-19 12:45:34 [1495169134] :     query 19 finished OK (1 seconds)
2017-05-19 12:45:34 [1495169134] :   running query 20
2017-05-19 12:45:35 [1495169135] :     query 20 finished OK (1 seconds)
2017-05-19 12:45:35 [1495169135] :   running query 21
2017-05-19 12:45:36 [1495169136] :     query 21 finished OK (1 seconds)
2017-05-19 12:45:36 [1495169136] :   running query 22
2017-05-19 12:57:30 [1495169850] :     query 22 finished OK (357 seconds)
2017-05-19 12:57:30 [1495169850] : finished TPC-H benchmark

三、结果对比

总的来说,Deepgreen在整个测试中整体优于Greenplum。在22轮测试中,有8轮持平,其余14轮Deepgreen均优于Greenplum。其中Q3、Q7、Q8、Q11、Q16查询比Greenplum快指数倍;Greenplum的Q9、Q13、Q18、Q19、Q21 timeout,而Deepgreen没有;Q4、Q5、Q6、Q10、Q12、Q14、Q15、Q20二者持平。
d2bd8ac17549d3ce91d384d6422c844b068e30cc
8a9741c119a601992c790d88ecb6ce0f0595629b

这篇关于Deepgreen与Greenplum TPC-H性能测试对比(使用德哥脚本)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/354562

相关文章

关于MyISAM和InnoDB对比分析

《关于MyISAM和InnoDB对比分析》:本文主要介绍关于MyISAM和InnoDB对比分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录开篇:从交通规则看存储引擎选择理解存储引擎的基本概念技术原理对比1. 事务支持:ACID的守护者2. 锁机制:并发控制的艺

SpringBoot中使用Flux实现流式返回的方法小结

《SpringBoot中使用Flux实现流式返回的方法小结》文章介绍流式返回(StreamingResponse)在SpringBoot中通过Flux实现,优势包括提升用户体验、降低内存消耗、支持长连... 目录背景流式返回的核心概念与优势1. 提升用户体验2. 降低内存消耗3. 支持长连接与实时通信在Sp

python使用库爬取m3u8文件的示例

《python使用库爬取m3u8文件的示例》本文主要介绍了python使用库爬取m3u8文件的示例,可以使用requests、m3u8、ffmpeg等库,实现获取、解析、下载视频片段并合并等步骤,具有... 目录一、准备工作二、获取m3u8文件内容三、解析m3u8文件四、下载视频片段五、合并视频片段六、错误

CSS中的Static、Relative、Absolute、Fixed、Sticky的应用与详细对比

《CSS中的Static、Relative、Absolute、Fixed、Sticky的应用与详细对比》CSS中的position属性用于控制元素的定位方式,不同的定位方式会影响元素在页面中的布... css 中的 position 属性用于控制元素的定位方式,不同的定位方式会影响元素在页面中的布局和层叠关

gitlab安装及邮箱配置和常用使用方式

《gitlab安装及邮箱配置和常用使用方式》:本文主要介绍gitlab安装及邮箱配置和常用使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1.安装GitLab2.配置GitLab邮件服务3.GitLab的账号注册邮箱验证及其分组4.gitlab分支和标签的

SpringBoot3应用中集成和使用Spring Retry的实践记录

《SpringBoot3应用中集成和使用SpringRetry的实践记录》SpringRetry为SpringBoot3提供重试机制,支持注解和编程式两种方式,可配置重试策略与监听器,适用于临时性故... 目录1. 简介2. 环境准备3. 使用方式3.1 注解方式 基础使用自定义重试策略失败恢复机制注意事项

nginx启动命令和默认配置文件的使用

《nginx启动命令和默认配置文件的使用》:本文主要介绍nginx启动命令和默认配置文件的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录常见命令nginx.conf配置文件location匹配规则图片服务器总结常见命令# 默认配置文件启动./nginx

在Windows上使用qemu安装ubuntu24.04服务器的详细指南

《在Windows上使用qemu安装ubuntu24.04服务器的详细指南》本文介绍了在Windows上使用QEMU安装Ubuntu24.04的全流程:安装QEMU、准备ISO镜像、创建虚拟磁盘、配置... 目录1. 安装QEMU环境2. 准备Ubuntu 24.04镜像3. 启动QEMU安装Ubuntu4

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

Windows下C++使用SQLitede的操作过程

《Windows下C++使用SQLitede的操作过程》本文介绍了Windows下C++使用SQLite的安装配置、CppSQLite库封装优势、核心功能(如数据库连接、事务管理)、跨平台支持及性能优... 目录Windows下C++使用SQLite1、安装2、代码示例CppSQLite:C++轻松操作SQ