用动态规划算法解Travelling Salesman Problem(TSP)问题

2023-11-05 23:20

本文主要是介绍用动态规划算法解Travelling Salesman Problem(TSP)问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

用动态规划算法解Travelling Salesman Problem(TSP)问题

  • 基础知识
  • 动态规划的求解过程
    • 动态规划方程的推导
    • 状态压缩
  • 源码:
  • 输入数据:

基础知识

  Travelling Salesman Problem (TSP) 是最基本的路线问题。它寻求的是旅行者由起点出发,通过所有给定的需求点后,再次返回起点所花费的最小路径成本,也叫旅行商问题、旅行推销员问题、担货郎问题等。
  动态规划算法(Dynamic Programming,简称DP)通常用于求解具有某种最优性质的问题,其基本思想是将待求解问题分解成若干个子问题,先求解子问题,然后由这些子问题的解再得到原问题的解。

动态规划的求解过程

  下面来验证一下此方法求解的可行性。
  设 s,s1,s2…s为满足题意的最短回路。假设从s到s1的路径已经确定,则问题转化为从s1到s的最短路径问题。而很显然,s1,s2…s一定可以构成一条最短路径,所以构成最优子结构性质,可以用动态规划求解。

动态规划方程的推导

  用 V’ 表示一个点的集合,假设从顶点 s 出发, d ( i , V’ ) 表示当前到达顶点 i,经过 V’ 集合中所有顶点一次的最小花费。

  1. .当 V’ 为仅包含起点的集合,也就是
    d ( s , { s } ) = 0 d(s,\{ s\} ) = 0 d(s,{s})=0
  2. 其他情况,则对子问题求最优解。需在 V’ 这个城市集合中,尝试每一个城市结点,并求出最优解。
    在这里插入图片描述
  3. 最后的求解方式为:
    在这里插入图片描述

其中 S 为包含所有点的集合。把公式一套,题就解了。

状态压缩

  推到动态规划方程时,我们注意到 V’ 是一个数的集合,而且解决的问题规模比较小,于是可以用一个二进制数来存储这个集合。简单来说就是——如果城市 k 在集合 V’ 中,那么存储集合的变量 i 的第 k 位就为 1,否则为 0。由于有 n 个城市,所有的状态总数我们用 M 来表示,那么很明显:M = 2^n,而 0 到 2^n -1 的所有整数则构成了 V’ 的所有状态。这样,结合位运算,动归方程的状态表示就很容易了。

源码:

#include<string>
#include<iostream>
#include<algorithm>
using namespace std;
// 定义常量
const int INF = 0x3f3f3f3f;
#define sqr(x) ((x)*(x))
// 定义变量
string file_name;
int type; // type == 1 满秩矩阵格式, type == 2 二维坐标式
int s;
int N;// 城市结点数量
int init_point;
double **dp; // 动态规划状态数组dp[i][j],i表示集合V’,j表示当前到达的城市结点
double **dis; // 两个城市结点之间的距离
double ans;
// 定义结构体
struct vertex {double x, y; // 城市结点的坐标int id; // 城市结点的idint input(FILE *fp) {return fscanf(fp, "%d %lf %lf", &id, &x, &y);}
}*node;double EUC_2D(const vertex &a, const vertex &b) {return sqrt(sqr(a.x - b.x) + sqr(a.y - b.y));
}void io() { // 数据读入printf("input file_name and data type\n");cin >> file_name >> type;FILE *fp = fopen(file_name.c_str(), "r");fscanf(fp, "%d", &N);node = new vertex[N + 5];dis = new double*[N + 5];if (type == 1) {for (int i = 0; i < N; i++) {dis[i] = new double[N];for (int j = 0; j < N; j++)fscanf(fp, "%lf", &dis[i][j]);}}else {for (int i = 0; i < N; i++)node[i].input(fp);for (int i = 0; i < N; i++) {dis[i] = new double[N];for (int j = 0; j < N; j++)dis[i][j] = EUC_2D(node[i], node[j]);// 计算城市之间的距离}}fclose(fp);return;
}void init() { // 数据初始化dp = new double*[(1 << N) + 5];for (int i = 0; i < (1 << N); i++) {dp[i] = new double[N + 5];for (int j = 0; j < N; j++)dp[i][j] = INF;} // 初始化,除了dp[1][0],其余值都为INFans = INF;return;
}double slove() {int M = (1 << N);// M就是第四部分所说的V’状态总数,1<<N表示2^N,总共有2^N种状态dp[1][0] = 0;// 假设固定出发点为0,从0出发回到0的花费为0。TSP只要求是一个环路,所以出发点可以任选for (int i = 1; i < M; i++) {// 枚举V’的所有状态for (int j = 1; j < N; j++) {// 选择下一个加入集合的城市if (i & (1 << j)) continue;// 城市已经存在于V’之中if (!(i & 1)) continue;// 出发城市固定为0号城市for (int k = 0; k < N; k++) {// 在V’这个城市集合中尝试每一个结点,并求出最优解if (i & (1 << k)) {// 确保k已经在集合之中并且是上一步转移过来的结点dp[(1 << j) | i][j] = min(dp[(1 << j) | i][j], dp[i][k] + dis[k][j]); // 转移方程} // 将j点加入到i集合中}}}for (int i = 0; i < N; i++)ans = min(dp[M - 1][i] + dis[i][0], ans);// 因为固定了出发点,所以要加上到城市0的距离。另外要从所有的完成整个环路的集合V’中选择,完成最后的转移return ans;
}int main() {io();init();string tmp = file_name + ".sol";FILE *fp = fopen(tmp.c_str(), "w");fprintf(fp, "%.2lf\n", slove());delete[] dp;delete[] node;delete[] dis;fclose(fp);return 0;
}

输入数据:

若城市数据文件如下所示:

     161   38.24   20.422   39.57   26.153   40.56   25.324   36.26   23.125   33.48   10.546   37.56   12.197   38.42   13.118   37.52   20.449   41.23   9.1010   41.17   13.0511   36.08   -5.2112   38.47   15.1313   38.15   15.3514   37.51   15.1715   35.49   14.3216   39.36   19.56

这篇关于用动态规划算法解Travelling Salesman Problem(TSP)问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/353106

相关文章

MySQL 设置AUTO_INCREMENT 无效的问题解决

《MySQL设置AUTO_INCREMENT无效的问题解决》本文主要介绍了MySQL设置AUTO_INCREMENT无效的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参... 目录快速设置mysql的auto_increment参数一、修改 AUTO_INCREMENT 的值。

关于跨域无效的问题及解决(java后端方案)

《关于跨域无效的问题及解决(java后端方案)》:本文主要介绍关于跨域无效的问题及解决(java后端方案),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录通用后端跨域方法1、@CrossOrigin 注解2、springboot2.0 实现WebMvcConfig

Go语言中泄漏缓冲区的问题解决

《Go语言中泄漏缓冲区的问题解决》缓冲区是一种常见的数据结构,常被用于在不同的并发单元之间传递数据,然而,若缓冲区使用不当,就可能引发泄漏缓冲区问题,本文就来介绍一下问题的解决,感兴趣的可以了解一下... 目录引言泄漏缓冲区的基本概念代码示例:泄漏缓冲区的产生项目场景:Web 服务器中的请求缓冲场景描述代码

Java死锁问题解决方案及示例详解

《Java死锁问题解决方案及示例详解》死锁是指两个或多个线程因争夺资源而相互等待,导致所有线程都无法继续执行的一种状态,本文给大家详细介绍了Java死锁问题解决方案详解及实践样例,需要的朋友可以参考下... 目录1、简述死锁的四个必要条件:2、死锁示例代码3、如何检测死锁?3.1 使用 jstack3.2

解决JSONField、JsonProperty不生效的问题

《解决JSONField、JsonProperty不生效的问题》:本文主要介绍解决JSONField、JsonProperty不生效的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录jsONField、JsonProperty不生效javascript问题排查总结JSONField

github打不开的问题分析及解决

《github打不开的问题分析及解决》:本文主要介绍github打不开的问题分析及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、找到github.com域名解析的ip地址二、找到github.global.ssl.fastly.net网址解析的ip地址三

MySQL版本问题导致项目无法启动问题的解决方案

《MySQL版本问题导致项目无法启动问题的解决方案》本文记录了一次因MySQL版本不一致导致项目启动失败的经历,详细解析了连接错误的原因,并提供了两种解决方案:调整连接字符串禁用SSL或统一MySQL... 目录本地项目启动报错报错原因:解决方案第一个:第二种:容器启动mysql的坑两种修改时区的方法:本地

springboot加载不到nacos配置中心的配置问题处理

《springboot加载不到nacos配置中心的配置问题处理》:本文主要介绍springboot加载不到nacos配置中心的配置问题处理,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录springboot加载不到nacos配置中心的配置两种可能Spring Boot 版本Nacos

Java调用C#动态库的三种方法详解

《Java调用C#动态库的三种方法详解》在这个多语言编程的时代,Java和C#就像两位才华横溢的舞者,各自在不同的舞台上展现着独特的魅力,然而,当它们携手合作时,又会碰撞出怎样绚丽的火花呢?今天,我们... 目录方法1:C++/CLI搭建桥梁——Java ↔ C# 的“翻译官”步骤1:创建C#类库(.NET

Java中JSON格式反序列化为Map且保证存取顺序一致的问题

《Java中JSON格式反序列化为Map且保证存取顺序一致的问题》:本文主要介绍Java中JSON格式反序列化为Map且保证存取顺序一致的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未... 目录背景问题解决方法总结背景做项目涉及两个微服务之间传数据时,需要提供方将Map类型的数据序列化为co