用动态规划算法解Travelling Salesman Problem(TSP)问题

2023-11-05 23:20

本文主要是介绍用动态规划算法解Travelling Salesman Problem(TSP)问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

用动态规划算法解Travelling Salesman Problem(TSP)问题

  • 基础知识
  • 动态规划的求解过程
    • 动态规划方程的推导
    • 状态压缩
  • 源码:
  • 输入数据:

基础知识

  Travelling Salesman Problem (TSP) 是最基本的路线问题。它寻求的是旅行者由起点出发,通过所有给定的需求点后,再次返回起点所花费的最小路径成本,也叫旅行商问题、旅行推销员问题、担货郎问题等。
  动态规划算法(Dynamic Programming,简称DP)通常用于求解具有某种最优性质的问题,其基本思想是将待求解问题分解成若干个子问题,先求解子问题,然后由这些子问题的解再得到原问题的解。

动态规划的求解过程

  下面来验证一下此方法求解的可行性。
  设 s,s1,s2…s为满足题意的最短回路。假设从s到s1的路径已经确定,则问题转化为从s1到s的最短路径问题。而很显然,s1,s2…s一定可以构成一条最短路径,所以构成最优子结构性质,可以用动态规划求解。

动态规划方程的推导

  用 V’ 表示一个点的集合,假设从顶点 s 出发, d ( i , V’ ) 表示当前到达顶点 i,经过 V’ 集合中所有顶点一次的最小花费。

  1. .当 V’ 为仅包含起点的集合,也就是
    d ( s , { s } ) = 0 d(s,\{ s\} ) = 0 d(s,{s})=0
  2. 其他情况,则对子问题求最优解。需在 V’ 这个城市集合中,尝试每一个城市结点,并求出最优解。
    在这里插入图片描述
  3. 最后的求解方式为:
    在这里插入图片描述

其中 S 为包含所有点的集合。把公式一套,题就解了。

状态压缩

  推到动态规划方程时,我们注意到 V’ 是一个数的集合,而且解决的问题规模比较小,于是可以用一个二进制数来存储这个集合。简单来说就是——如果城市 k 在集合 V’ 中,那么存储集合的变量 i 的第 k 位就为 1,否则为 0。由于有 n 个城市,所有的状态总数我们用 M 来表示,那么很明显:M = 2^n,而 0 到 2^n -1 的所有整数则构成了 V’ 的所有状态。这样,结合位运算,动归方程的状态表示就很容易了。

源码:

#include<string>
#include<iostream>
#include<algorithm>
using namespace std;
// 定义常量
const int INF = 0x3f3f3f3f;
#define sqr(x) ((x)*(x))
// 定义变量
string file_name;
int type; // type == 1 满秩矩阵格式, type == 2 二维坐标式
int s;
int N;// 城市结点数量
int init_point;
double **dp; // 动态规划状态数组dp[i][j],i表示集合V’,j表示当前到达的城市结点
double **dis; // 两个城市结点之间的距离
double ans;
// 定义结构体
struct vertex {double x, y; // 城市结点的坐标int id; // 城市结点的idint input(FILE *fp) {return fscanf(fp, "%d %lf %lf", &id, &x, &y);}
}*node;double EUC_2D(const vertex &a, const vertex &b) {return sqrt(sqr(a.x - b.x) + sqr(a.y - b.y));
}void io() { // 数据读入printf("input file_name and data type\n");cin >> file_name >> type;FILE *fp = fopen(file_name.c_str(), "r");fscanf(fp, "%d", &N);node = new vertex[N + 5];dis = new double*[N + 5];if (type == 1) {for (int i = 0; i < N; i++) {dis[i] = new double[N];for (int j = 0; j < N; j++)fscanf(fp, "%lf", &dis[i][j]);}}else {for (int i = 0; i < N; i++)node[i].input(fp);for (int i = 0; i < N; i++) {dis[i] = new double[N];for (int j = 0; j < N; j++)dis[i][j] = EUC_2D(node[i], node[j]);// 计算城市之间的距离}}fclose(fp);return;
}void init() { // 数据初始化dp = new double*[(1 << N) + 5];for (int i = 0; i < (1 << N); i++) {dp[i] = new double[N + 5];for (int j = 0; j < N; j++)dp[i][j] = INF;} // 初始化,除了dp[1][0],其余值都为INFans = INF;return;
}double slove() {int M = (1 << N);// M就是第四部分所说的V’状态总数,1<<N表示2^N,总共有2^N种状态dp[1][0] = 0;// 假设固定出发点为0,从0出发回到0的花费为0。TSP只要求是一个环路,所以出发点可以任选for (int i = 1; i < M; i++) {// 枚举V’的所有状态for (int j = 1; j < N; j++) {// 选择下一个加入集合的城市if (i & (1 << j)) continue;// 城市已经存在于V’之中if (!(i & 1)) continue;// 出发城市固定为0号城市for (int k = 0; k < N; k++) {// 在V’这个城市集合中尝试每一个结点,并求出最优解if (i & (1 << k)) {// 确保k已经在集合之中并且是上一步转移过来的结点dp[(1 << j) | i][j] = min(dp[(1 << j) | i][j], dp[i][k] + dis[k][j]); // 转移方程} // 将j点加入到i集合中}}}for (int i = 0; i < N; i++)ans = min(dp[M - 1][i] + dis[i][0], ans);// 因为固定了出发点,所以要加上到城市0的距离。另外要从所有的完成整个环路的集合V’中选择,完成最后的转移return ans;
}int main() {io();init();string tmp = file_name + ".sol";FILE *fp = fopen(tmp.c_str(), "w");fprintf(fp, "%.2lf\n", slove());delete[] dp;delete[] node;delete[] dis;fclose(fp);return 0;
}

输入数据:

若城市数据文件如下所示:

     161   38.24   20.422   39.57   26.153   40.56   25.324   36.26   23.125   33.48   10.546   37.56   12.197   38.42   13.118   37.52   20.449   41.23   9.1010   41.17   13.0511   36.08   -5.2112   38.47   15.1313   38.15   15.3514   37.51   15.1715   35.49   14.3216   39.36   19.56

这篇关于用动态规划算法解Travelling Salesman Problem(TSP)问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/353106

相关文章

IDEA和GIT关于文件中LF和CRLF问题及解决

《IDEA和GIT关于文件中LF和CRLF问题及解决》文章总结:因IDEA默认使用CRLF换行符导致Shell脚本在Linux运行报错,需在编辑器和Git中统一为LF,通过调整Git的core.aut... 目录问题描述问题思考解决过程总结问题描述项目软件安装shell脚本上git仓库管理,但拉取后,上l

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

Spring Gateway动态路由实现方案

《SpringGateway动态路由实现方案》本文主要介绍了SpringGateway动态路由实现方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随... 目录前沿何为路由RouteDefinitionRouteLocator工作流程动态路由实现尾巴前沿S

idea npm install很慢问题及解决(nodejs)

《ideanpminstall很慢问题及解决(nodejs)》npm安装速度慢可通过配置国内镜像源(如淘宝)、清理缓存及切换工具解决,建议设置全局镜像(npmconfigsetregistryht... 目录idea npm install很慢(nodejs)配置国内镜像源清理缓存总结idea npm in

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

idea突然报错Malformed \uxxxx encoding问题及解决

《idea突然报错Malformeduxxxxencoding问题及解决》Maven项目在切换Git分支时报错,提示project元素为描述符根元素,解决方法:删除Maven仓库中的resolv... 目www.chinasem.cn录问题解决方式总结问题idea 上的 maven China编程项目突然报错,是

Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题

《Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题》在爬虫工程里,“HTTPS”是绕不开的话题,HTTPS为传输加密提供保护,同时也给爬虫带来证书校验、... 目录一、核心问题与优先级检查(先问三件事)二、基础示例:requests 与证书处理三、高并发选型:

前端导出Excel文件出现乱码或文件损坏问题的解决办法

《前端导出Excel文件出现乱码或文件损坏问题的解决办法》在现代网页应用程序中,前端有时需要与后端进行数据交互,包括下载文件,:本文主要介绍前端导出Excel文件出现乱码或文件损坏问题的解决办法,... 目录1. 检查后端返回的数据格式2. 前端正确处理二进制数据方案 1:直接下载(推荐)方案 2:手动构造

Python绘制TSP、VRP问题求解结果图全过程

《Python绘制TSP、VRP问题求解结果图全过程》本文介绍用Python绘制TSP和VRP问题的静态与动态结果图,静态图展示路径,动态图通过matplotlib.animation模块实现动画效果... 目录一、静态图二、动态图总结【代码】python绘制TSP、VRP问题求解结果图(包含静态图与动态图

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe