手推广告论文(二)Wide Deep 推荐系统算法Wide Deep Learning for Recommender Systems

本文主要是介绍手推广告论文(二)Wide Deep 推荐系统算法Wide Deep Learning for Recommender Systems,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Wide & Deep Learning for Recommender Systems

论文地址https://arxiv.org/pdf/1606.07792.pdf

摘要

广义线性模型结合非线性特征转换,在处理具有大规模稀疏输入的回归和分类问题中已被广泛应用。通过一系列交叉积特征转换来记忆特征交互既有效又具有解释性,然而要实现更好的泛化性能,需要投入更多的特征工程工作。相较于此,深度神经网络能够通过为稀疏特征学习低维度密集嵌入,以较少的特征工程来更好地泛化至未见过的特征组合。但是,在用户与项目互动稀疏且高秩的情况下,具有嵌入的深度神经网络可能过度泛化,导致推荐的项目相关性较低。

为了解决这一问题,本文提出了一种名为Wide & Deep学习的方法,它联合训练宽线性模型和深度神经网络,将记忆与泛化的优势结合到推荐系统中。我们将该方法应用于Google Play商店,这是一个拥有超过10亿活跃用户和100万应用的商业移动应用平台,并对其进行了评估。在线实验结果表明,与仅使用宽模型或深模型相比,Wide & Deep方法显著提高了应用的下载量。同时,我们还在TensorFlow框架中开源了我们的实现方法。

CCS概念: • 计算方法 → 机器学习;神经网络;监督学习; • 信息系统 → 推荐系统;

关键词: Wide & Deep学习,推荐系统。

引言

推荐系统可以看作是一种搜索排名系统,它接收一组包含用户和上下文信息的输入查询,然后输出一个按照相关性排序的项目列表。在给定查询的情况下,推荐任务的目标是在数据库中找到相关的项目,并依据一定的目标(例如点击率或购买率)对这些项目进行排序。

与普通搜索排名问题类似,推荐系统面临的一个挑战是实现记忆和泛化的平衡。记忆可以简要地定义为学习项目或特征之间频繁共现的模式,并从历史数据中挖掘潜在的相关性。相对而言,泛化是基于相关性的传递性,旨在探索过去从未出现或很少出现的新特征组合。基于记忆的推荐通常更贴近用户兴趣,并与用户过去互动过的项目具有更直接的相关性。而与记忆相比,泛化更能够提高推荐项目的多样性,从而增加用户发现新内容的可能性。

本文主要关注Google Play商店的应用推荐问题,但所提出的方法同样适用于其他通用的推荐系统。

在实际应用中的大规模在线推荐和排名系统,广义线性模型(如逻辑回归)因其简单性、可扩展性和可解释性而被广泛采用。这些模型通常采用独热编码处理稀疏特征。以二进制特征“user_installed_app=netflix”为例,当用户安装了Netflix时,其值为1。有效地记忆特征可以通过在稀疏特征上进行交叉乘积转换来实现,例如AND(user_installed_app=netflix, impression_app=pandora)”,在用户安装了Netflix且后来安装了Pandora的情况下,其值为1。这表明特征对的共现与目标标签之间存在关联。通过使用较为宽泛的特征,例如AND(user_installed_category=video, impression_category=music),可以实现泛化,尽管可能需要进行手动特征工程。交叉乘积转换的局限在于,它们无法泛化到训练数据中未出现过的查询-项目特征对。

基于嵌入的模型,如因子分解机或深度神经网络,通过为每个查询和项目特征学习低维密集嵌入向量,减少了特征工程的负担,从而使模型能够泛化到之前未见过的查询-项目特征对。然而,在查询-项目矩阵稀疏且高秩的情况下(例如具有特定喜好的用户或只吸引少数人的小众项目),学习有效的低维表示可能会变得困难。在这种情况下,大部分查询-项目对之间实际上不存在交互,但密集嵌入可能导致所有查询-项目对都产生非零预测,从而导致过度泛化和不够相关的推荐结果。相比之下,采用交叉乘积特征转换的线性模型可以用更少的参数捕捉到这些“特殊规则”,从而更好地处理这种情况。

编辑切换为居中

添加图片注释,不超过 140 字(可选)

在本文中,我们提出了一种名为“Wide & Deep”学习框架&#

这篇关于手推广告论文(二)Wide Deep 推荐系统算法Wide Deep Learning for Recommender Systems的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/352929

相关文章

Maven中引入 springboot 相关依赖的方式(最新推荐)

《Maven中引入springboot相关依赖的方式(最新推荐)》:本文主要介绍Maven中引入springboot相关依赖的方式(最新推荐),本文给大家介绍的非常详细,对大家的学习或工作具有... 目录Maven中引入 springboot 相关依赖的方式1. 不使用版本管理(不推荐)2、使用版本管理(推

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

mysql的基础语句和外键查询及其语句详解(推荐)

《mysql的基础语句和外键查询及其语句详解(推荐)》:本文主要介绍mysql的基础语句和外键查询及其语句详解(推荐),本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋... 目录一、mysql 基础语句1. 数据库操作 创建数据库2. 表操作 创建表3. CRUD 操作二、外键

利用Python快速搭建Markdown笔记发布系统

《利用Python快速搭建Markdown笔记发布系统》这篇文章主要为大家详细介绍了使用Python生态的成熟工具,在30分钟内搭建一个支持Markdown渲染、分类标签、全文搜索的私有化知识发布系统... 目录引言:为什么要自建知识博客一、技术选型:极简主义开发栈二、系统架构设计三、核心代码实现(分步解析

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Linux系统中卸载与安装JDK的详细教程

《Linux系统中卸载与安装JDK的详细教程》本文详细介绍了如何在Linux系统中通过Xshell和Xftp工具连接与传输文件,然后进行JDK的安装与卸载,安装步骤包括连接Linux、传输JDK安装包... 目录1、卸载1.1 linux删除自带的JDK1.2 Linux上卸载自己安装的JDK2、安装2.1

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时