【数据结构】树与二叉树(一):树(森林)的基本概念:父亲、儿子、兄弟、后裔、祖先、度、叶子结点、分支结点、结点的层数、路径、路径长度、结点的深度、树的深度

本文主要是介绍【数据结构】树与二叉树(一):树(森林)的基本概念:父亲、儿子、兄弟、后裔、祖先、度、叶子结点、分支结点、结点的层数、路径、路径长度、结点的深度、树的深度,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 5.1 树的基本概念
    • 5.1.1 树的定义
      • 有序树、无序树
    • 5.1.2 森林的定义
    • 5.1.3 树的术语
      • 1. 父亲(parent)、儿子(child)、兄弟(sibling)、后裔(descendant)、祖先(ancestor)
      • 2. 度(degree)、叶子节点(leaf node)、分支节点(internal node)
      • 3. 结点的层数
      • 4. 路径、路径长度、结点的深度、树的深度
    • 5.1.4 树的表示
      • 1.树形表示法
      • 2.嵌套集合表示法
      • 3.嵌套括号表示法
      • 4.凹入表示法

5.1 树的基本概念

5.1.1 树的定义

  • 一棵树是结点的有限集合T:
    • 若T非空,则:
      • 有一个特别标出的结点,称作该树的,记为root(T);
      • 其余结点分成若干个不相交的非空集合T1, T2, …, Tm (m>0),其中T1, T2, …, Tm又都是树,称作root(T)的子树
        • 在这里插入图片描述
    • T 空时为空树,记作root(T)=NULL。

有序树、无序树

  如果子树T1, T2, …, Tm 的相对次序被指明,则称该树为有序树,否则称为无序树
  在有序树中,把Ti (1≤i≤m)称作根的第 i 个子树。因为计算机表示定义了树的一种隐含次序,所以大多数情况下假定所讨论的树都是有序的,除非另有说明。

  • 如果是有序树,那么两者是不同的;如果是无序树,那么两者是相同的。
    在这里插入图片描述

5.1.2 森林的定义

  一个森林是0棵或多棵不相交(非空)树的集合,通常是一个有序的集合。换句话说,森林由多个树组成,这些树之间没有交集,且可以按照一定的次序排列。在森林中,每棵树都是独立的,具有根节点和子树,树与树之间没有直接的连接关系。
  森林是树的扩展概念,它是由多个树组成的集合。在计算机科学中,森林也被广泛应用于数据结构和算法设计中,特别是在图论和网络分析等领域。

5.1.3 树的术语

1. 父亲(parent)、儿子(child)、兄弟(sibling)、后裔(descendant)、祖先(ancestor)

在这里插入图片描述

  • 这些术语用于描述节点之间的关系和层次结构

    • 每个节点都是它的子树的根节点的父亲
    • 反过来,每个节点都是它父亲的儿子
    • 具有相同父亲的节点称为兄弟
    • 每个节点都是它子树中所有节点的祖先
    • 反过来,每个节点都是它祖先的后裔
  • 节点之间的父子关系和兄弟关系可以帮助我们理解树的结构和遍历算法

  • 祖先和后裔的概念则用于描述节点之间的历史关系和衍生关系。

2. 度(degree)、叶子节点(leaf node)、分支节点(internal node)

在这里插入图片描述

  • 一个节点的儿子的个数称为该节点的次数
  • 如果一个节点的度为0,则它被称为终端节点叶子节点(在严格意义上,非根的终端节点称为叶子节点)。
  • 非终端节点称为分支节点

  在图5.1中,节点B有一个子树,其度为1;节点A有三个子树,其度为3;因此,这棵树的度为3,可以称为3元树(3-ary tree)。叶子节点是度为0的节点,例如在图5.1中,节点F、G、H和I是叶子节点,而节点A、B、C、D和E是分支节点。

3. 结点的层数

  • 结点的层数是根据递归定义来确定的:
    • 根节点的层数为0。
    • 其余节点的层数是其父节点的层数加1。
  • 根节点位于第0层,它的子节点位于第1层,子节点的子节点位于第2层,依此类推。
    在这里插入图片描述

4. 路径、路径长度、结点的深度、树的深度

  • 路径是指结点序列v1, v2, …, vk,其中每个节点vi是节点vi+1的父节点(1 ≤ i < k)。
  • 路径长度是指路径经过的边数,即k-1。
  • 结点vi的深度是指从根节点到结点vi的路径长度 D e p t h ( i ) Depth(i) Depth(i)
  • 一棵树的深度是指树中所有节点深度的最大值: m a x i = 1 , … , n D e p t h ( i ) max_{i=1,…, n}Depth(i) maxi=1,,nDepth(i)

在这里插入图片描述
  图5.1的树中,结点序列A, B, E是结点A到结点E的路径,路经长度为2,结点E的深度为2,树的深度为3。

5.1.4 树的表示

1.树形表示法

class TreeNode:def __init__(self, value):self.value = valueself.children = []# 创建一个树
root = TreeNode('A')
node1 = TreeNode('B')
node2 = TreeNode('C')
node3 = TreeNode('D')root.children.append(node1)
root.children.append(node2)
node2.children.append(node3)

2.嵌套集合表示法

tree = {'value': 'A','children': [{'value': 'B','children': []},{'value': 'C','children': [{'value': 'D','children': []}]}]
}

3.嵌套括号表示法

tree_str = '((A (B C)) D)'

4.凹入表示法

def print_tree(node, level=0):if node is None:returnprint('  ' * level + str(node.value))for child in node.children:print_tree(child, level + 1)print_tree(root)

这篇关于【数据结构】树与二叉树(一):树(森林)的基本概念:父亲、儿子、兄弟、后裔、祖先、度、叶子结点、分支结点、结点的层数、路径、路径长度、结点的深度、树的深度的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/352385

相关文章

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

利用Python把路径转为绝对路径的方法

《利用Python把路径转为绝对路径的方法》在Python中,如果你有一个相对路径并且想将其转换为绝对路径,你可以使用Path对象的resolve()方法,Path是Python标准库pathlib中... 目录1. os.path.abspath 是什么?怎么用?基本用法2. os.path.abspat

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

SpringBoot路径映射配置的实现步骤

《SpringBoot路径映射配置的实现步骤》本文介绍了如何在SpringBoot项目中配置路径映射,使得除static目录外的资源可被访问,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一... 目录SpringBoot路径映射补:springboot 配置虚拟路径映射 @RequestMapp

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置