优化|求解非凸和无梯度lipschitz连续性的一阶算法在二次规划反问题中的应用(代码分享)

本文主要是介绍优化|求解非凸和无梯度lipschitz连续性的一阶算法在二次规划反问题中的应用(代码分享),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

原文信息(包括题目、发表期刊、原文链接等):First Order Methods Beyond Convexity and Lipschitz Gradient Continuity with Applications to Quadratic Inverse Problems
原文作者:Jérôme Bolte, Shoham Sabach, Marc Teboulle, and Yakov Vaisbourd
代码分享者:李朋

1 问题描述

考虑下面的二次规划反问题
min ⁡ { Ψ ( x ) : = g ( x ) + θ f ( x ) : x ∈ R d } \min\Big\{ \Psi(x):=g(x) + \theta f(x): x\in \mathbb{R}^{d}\Big\} min{Ψ(x):=g(x)+θf(x):xRd}

其中 g ( x ) = 1 4 ∑ i = 1 m ( x T A i x − b i ) 2 , f ( x ) = ∥ x ∥ 1 g(x) = \frac{1}{4}\sum_{i=1}^{m}(x^{T}A_{i}x - b_{i})^2, f(x) = \|x\|_{1} g(x)=41i=1m(xTAixbi)2,f(x)=x1,而且 A i A_{i} Ai是对称矩阵。

2 求解方法

在给出求解方法之前,我们首先定义
p λ ( x ) = λ ∇ g ( x ) − ∇ h ( x ) p_{\lambda}(x)=\lambda \nabla g(x)-\nabla h(x) pλ(x)=λg(x)h(x)
和软阈值算子
S τ ( y ) = max ⁡ { ∣ y ∣ − τ , 0 } sgn ( y ) = max ⁡ ( y − τ , 0 ) − max ⁡ ( − y − τ , 0 ) ( 5.1 ) S_{\tau}(y)=\max\{|y|-\tau, 0\}\text{sgn}(y)=\max(y-\tau,0) - \max(-y-\tau,0) \qquad (5.1) Sτ(y)=max{yτ,0}sgn(y)=max(yτ,0)max(yτ,0)(5.1)
为保证函数 g ( x ) , f ( x ) g(x),f(x) g(x),f(x)L-smad,我们令
h ( x ) = 1 4 ∥ x ∥ 2 4 + 1 2 ∥ x ∥ 2 2 , h(x) = \frac{1}{4} \| x \|_2^4 + \frac{1}{2} \| x \|_2^2, h(x)=41x24+21x22,
具体见原文引理5.1。

本文的求解方法主要根据原文的命题5.1,如下所示

命题5.1 ( l 1 l_{1} l1范数正则化的Bregman近似公式) 令 f = ∥ ⋅ ∥ 1 f=\|\cdot\|_{1} f=1且对 x ∈ R d x\in \mathbb{R}^{d} xRd,令 v ( x ) : = S λ θ ( p λ ( x ) ) v(x):=S_{\lambda \theta}(p_{\lambda}(x)) v(x):=Sλθ(pλ(x))。那么,可得 x + = T λ ( x ) x^{+}=T_{\lambda}(x) x+=Tλ(x)
x + = − t ∗ v ( x ) = t ∗ S λ θ ( ∇ h ( x ) − λ ∇ g ( x ) ) ( 5.2 ) x^{+}=-t^{*}v(x)=t^{*}S_{\lambda\theta}(\nabla h(x)-\lambda\nabla g(x)) \qquad (5.2) x+=tv(x)=tSλθ(h(x)λg(x))(5.2)

是显示公式,其中 t ∗ t^{*} t是下面方程的唯一正实根,
t 3 ∥ v ( x ) ∥ 2 2 + t − 1 = 0. ( 5.3 ) t^{3}\|v(x)\|_{2}^{2}+t-1=0. \qquad (5.3) t3v(x)22+t1=0.(5.3)

3 代码实现

在本次仿真中,我们采用Julia语言编写一个求解二次规划反问题的算法 (5-2)。

(1) 用using 添加一些要用到的库。

using Roots
using LinearAlgebra
using SparseArrays
using Distributions
using Random
using Printf
using Plots
using Polynomials

(2) 根据公式 (5-1) 定义软阈值函数

function compute_softThreshold(y,τ)p = max.(y.-τ,0) - max.(-y.-τ,0);return p;
end

(3)根据公式(5-3) 计算 t ∗ t^{*} t

function find_positiveRoot(S)t = variable();v = sum(S.^2);f = t^3*v + t -1;t_opt = find_zero(f,(0,1));return t_opt;
end

(4) 计算 g ( x ) = 1 4 ∑ i = 1 m ( x T A i x − b i ) 2 g(x) = \frac{1}{4}\sum_{i=1}^{m}(x^{T}A_{i}x - b_{i})^2 g(x)=41i=1m(xTAixbi)2的导数

function derivative_g(A,b,x,m,n)# compute the derivative of g(x)der = zeros(n,1);for k in range(1,m)der = der + (transpose(x)*A[k]*x.-b[k]).*(A[k]*x);endreturn der;
end

(5) 计算 h ( x ) = 1 4 ∥ x ∥ 2 4 + 1 2 ∥ x ∥ 2 2 h(x)=\frac{1}{4}\|x\|_{2}^{4}+\frac{1}{2}\|x\|_{2}^{2} h(x)=41x24+21x22的导数

function derivative_h(x)# compute the derivative of h(x)der = (sum(x.^2) + 1).*x;return der;
end

(6) 全局参数

# Global Parameters
MAXITE = 500;
m =3;
n = 2;

(7) 生成问题数据

θ = 0.5;Random.seed!(123);A = Array{Matrix}(undef,m);
b = Array{Float64}(undef,m); d = Normal(2,2);
for k in range(1,m)A[k] = rand(d,n,n)A[k] = (transpose(A[k])+A[k])./2
endfor k in range(1,m)b[k] = rand(d,1)[1];
end

(8) 根据引理5.1的结果可知 L ≥ ∑ i = 1 m 3 ∥ A i ∥ 2 + ∥ A i ∥ ∣ b i ∣ L\geq \sum_{i=1}^{m}3\|A_{i}\|^{2}+\|A_{i}\||b_{i}| Li=1m3∥Ai2+Ai∥∣bi。另外,根据定理 4.1 成立的条件 0 < λ L < 1 0<\lambda L<1 0<λL<1,可得 0 < λ < 1 L 0<\lambda<\frac{1}{L} 0<λ<L1

L = sum([3*norm(A[k]).^2 + norm(A[k])*norm(b[k]) for k =1:m])+1;
λ = 1/L;   #λ≤1/L

(9) 主程序

x = ones(n,1)
objval_vec = zeros(1,MAXITE);  #存储计算过程中目标函数值
x_vec = zeros(n,MAXITE);       #存储计算过程中变量值for k in range(1,MAXITE)#计算、存储当前目标函数值objval = sum([1/4*(transpose(x)*A[k]*x.-b[k])^2 for k=1:m]) .+ θ.*norm(x,1); objval_vec[1,k] = objval[1,1];  #存储当前变量值x_vec[:,k] = x; #计算函数g(x)、h(x)当前时刻的导数值xold = x;der_h = derivative_h(xold);der_g = derivative_g(A,b,xold,m,n);y = λ*der_g - der_h;τ = λ * θ;v = compute_softThreshold(y,τ);   #计算公式(5-2)中的软阈值算子部分   topt = find_positiveRoot(v);  #计算公式(5-2)中的 t*x = -topt.*v; # 根据公式(5-2) 求出下一时刻 x 的值
end
print("最优解:",x,"\n");
print("最小目标值:",objval_vec[end]);

(10) 画出目标函数值随计算步数的变化

K = range(1, MAXITE);
plot(K, [objval_vec[k] for k=1:MAXITE], yaxis=:log10,label="object value")

(11) 画出变量值随计算步数的变化

plot(x_vec[1,1:MAXITE], x_vec[2,1:MAXITE], arrow = :arrow)
scatter!([x_vec[1,1]], [x_vec[2,1]], markshape=:rect, marksize = 5, markercolor= :red, legend = false)
xlabel!("x1")
ylabel!("x2")

这篇关于优化|求解非凸和无梯度lipschitz连续性的一阶算法在二次规划反问题中的应用(代码分享)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/349788

相关文章

IDEA和GIT关于文件中LF和CRLF问题及解决

《IDEA和GIT关于文件中LF和CRLF问题及解决》文章总结:因IDEA默认使用CRLF换行符导致Shell脚本在Linux运行报错,需在编辑器和Git中统一为LF,通过调整Git的core.aut... 目录问题描述问题思考解决过程总结问题描述项目软件安装shell脚本上git仓库管理,但拉取后,上l

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

idea npm install很慢问题及解决(nodejs)

《ideanpminstall很慢问题及解决(nodejs)》npm安装速度慢可通过配置国内镜像源(如淘宝)、清理缓存及切换工具解决,建议设置全局镜像(npmconfigsetregistryht... 目录idea npm install很慢(nodejs)配置国内镜像源清理缓存总结idea npm in

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

Java集合之Iterator迭代器实现代码解析

《Java集合之Iterator迭代器实现代码解析》迭代器Iterator是Java集合框架中的一个核心接口,位于java.util包下,它定义了一种标准的元素访问机制,为各种集合类型提供了一种统一的... 目录一、什么是Iterator二、Iterator的核心方法三、基本使用示例四、Iterator的工

Java 线程池+分布式实现代码

《Java线程池+分布式实现代码》在Java开发中,池通过预先创建并管理一定数量的资源,避免频繁创建和销毁资源带来的性能开销,从而提高系统效率,:本文主要介绍Java线程池+分布式实现代码,需要... 目录1. 线程池1.1 自定义线程池实现1.1.1 线程池核心1.1.2 代码示例1.2 总结流程2. J

idea突然报错Malformed \uxxxx encoding问题及解决

《idea突然报错Malformeduxxxxencoding问题及解决》Maven项目在切换Git分支时报错,提示project元素为描述符根元素,解决方法:删除Maven仓库中的resolv... 目www.chinasem.cn录问题解决方式总结问题idea 上的 maven China编程项目突然报错,是

Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题

《Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题》在爬虫工程里,“HTTPS”是绕不开的话题,HTTPS为传输加密提供保护,同时也给爬虫带来证书校验、... 目录一、核心问题与优先级检查(先问三件事)二、基础示例:requests 与证书处理三、高并发选型:

利用Python操作Word文档页码的实际应用

《利用Python操作Word文档页码的实际应用》在撰写长篇文档时,经常需要将文档分成多个节,每个节都需要单独的页码,下面:本文主要介绍利用Python操作Word文档页码的相关资料,文中通过代码... 目录需求:文档详情:要求:该程序的功能是:总结需求:一次性处理24个文档的页码。文档详情:1、每个

JS纯前端实现浏览器语音播报、朗读功能的完整代码

《JS纯前端实现浏览器语音播报、朗读功能的完整代码》在现代互联网的发展中,语音技术正逐渐成为改变用户体验的重要一环,下面:本文主要介绍JS纯前端实现浏览器语音播报、朗读功能的相关资料,文中通过代码... 目录一、朗读单条文本:① 语音自选参数,按钮控制语音:② 效果图:二、朗读多条文本:① 语音有默认值:②