缺陷检测-如何用深度学习进行CT影像肺结节探测(附有基于Intel Extended Caffe的3D Faster RCNN代码开源)

本文主要是介绍缺陷检测-如何用深度学习进行CT影像肺结节探测(附有基于Intel Extended Caffe的3D Faster RCNN代码开源),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

近期宜远智能参加阿里天池医疗AI大赛,用3D Faster RCNN模型在CT影像的肺结节探测上,取得了较好的成绩,特别是在计算资源充足的情况下,模型效果表现优异。这是他们的经验分享(tianchi.aliyun.com/comp   ),末尾还附有代码开源地址。

1.数据预处理

首先用SimpleITK把mhd图片读入,对每个切片使用Gaussian filter然后使用阈值-600把肺部图片二值化,然后再分析该切片的面积,去掉面积小于30mm2的区域和离心率大于0.99的区域,找到3D的连通区域。

只保留0.68L到8.2L体积的区域,并且如果大于6000 mm2的区域到切片的中心区域的距离大于62mm也删除该连通区。最后只留下一个最大的连通区域。

左边是原始图,右边是切完肺的。



在实际中预处理中,我们可视化了每个肺的部分切片,存在一些bad case。主要有以下3种,我们也对这3种情况做了优化:

  1. 把肺边缘结节切掉。因为阈值导致的,把二值化环境-600改成-150有改善。
  2. 切出来全部为黑的(未找到任何肺部区域)。有些ct图是从头部开始扫描的,导致影响了连通区域判断,需要手动查看该mhd文件,看里面的从第个切片到第几个切片是肺部,在做完二值化操作后,人为把前面和后面的切片全部设置为0。
  3. 切出来只有一侧肺部情况。

有些患者两个肺的大小差别比较大,需要调整阈值,放宽阈值标注,把大于6000 mm2的区域到切片的中心区域的距离大于62mm也删除该连通区,改为大于1500 mm2的区域到切片的中心区域的距离大于92mm也删除该连通区。并且在最后一步,不只保留最大的连通区,同时保留最大的两个连通区。

2.模型网络结构

我们的网络如图所示,整体上是采用Unet+Resnet的思想。里面每个Resnet Block都是由多个卷积层和bn层和relu层组成的。我们只展示主体结构(整体深度大概150多层):



3.整体优化思路

3.1 数据优化

  1. 肺部切割优化:这块其实没有完美的方法能把所有的肺一次性都切好。具体的思路我们已经在第1章数据预处理部分写出来了:我们会先切一遍,然后将切肺中切的不好的,再调参数重新切一次。
  2. 10mm 以下结节的训练数据增强。我们在没做数据增强的情况下跑出来的模型,在验证集上漏掉了不少10mm以下的结节,所以对这部分的结节做了增强。

3.2 工业界优化思路:模型架构 > 模型网络

我们的优化思路非常的工业界,用更多的计算资源,和更复杂的模型架构,并不把大量的时间用在调模型网络上面。

3.3 层次化Hard Mining

业界两套网络的做法比较普遍,比如用Unet切割或Faster RCNN检测,用3D CNN分类,如下图所示。



我们用的是如下统一的一套模型架构,即3D Faster RCNN的RPN网络,没有后续的全连接做分类,也并没有

再在后面接一套3D CNN来做降假阳。能减少需要调节的网络参数。



该hard mining的过程,其实就是用上一层的模型作为下一层的输入,每一层的训练数据都选取比上一层更难分的。



这套架构,无需2套网络,只需要选择一套较深的网络。

根据我们的经验,采取层次化模型训练,第二层模型froc能比第一层效果提升0.05,第三层能比第二层提升0.02。

3.4 LOSS 函数的设计

在计算loss函数的时候,我们做了2点优化。

1.在使用hard mining的时候,每个batchsize里面负例的个数会明显多于正例。为了防止算loss的时候被负例主导。我们将loss函数分成3个部分,负例的loss,正例的loss和边框的loss。



2.在上一节提到的层次化hard mining,我们在最后一层训练模型的时候,会修改loss函数的计算,对于分错的负例和正例,做加权。这个思路和focal loss是很像的。



比如:

红框里面的部分,本来是负例,却以很大的概率被分成正例,这部分在算loss的时候权值就大些。红框外面的部分权值就小些。



4.本次比赛的关键点总结:

1) 解决了基于Intel extended Caffe的150多层深度网络的 3D Faster RCNN RPN网络收敛问题。

可以从2个方向来解决(线下Phi卡平台均已验证过)。

a)将 drop out设置为 0.1。缺点是会容易过拟合。

b)先训练一个crop size为32的模型

用这个模型做pre train model,训练crop size 64的模型

依次类推。

直到完成crop size为128的模型训练

由于时间关系,我们并未比较这2种思路的效果。比赛中使用的是第1个思路,收敛的更快些。

2) 提出层次化Hard Mining的训练框架。并没有采用常见的,unet做分割+3D CNN降假阳 或者 2d faster rcnn做检测+3D CNN降假阳的思路。我们只用了一套网络。减少了需要调节的网络参数。

3) 重新设计了loss函数,防止负例主导loss的计算, 并且在降低loss的过程中,更聚焦于分错的训练样本。

5. 经验总结:

我们团队虽然过往深度学习架构经验多,但对医学影像处理的know how属于尚在探索之中。所以,我们的优化思路,是用更多的计算资源,和更复杂的模型架构,来弥补没有专用模型网络积累的短板。在第一轮比赛时通过调用比较充足的计算资源时效果比较显著,但在第二轮限定计算资源的多CPU的框架上,比较受限于计算资源及时间。

在计算资源比较充沛的情况下,选取比较深的Resnet效果会明显。在资源受限的实际场合或者现实的生产环境,我们有两点启发:

  1. 学会认同重复造轮子的基础性工作。第一轮比赛我们是pytorch框架,第二轮按要求在caffe上实现,特别是在Intel Extended Caffe对3D支持有限,重写了不少很基础的模块,这种貌似重复造轮子的工作,对我们提出了更高的要求,但也锻炼了我们深入到框架底层的能力,从而对不同框架的性能特点有更深的认识,这种重写甚至还因此帮我们找到我们第一版pytorch代码里detect部分存在的一个bug。
  2. 根据资源灵活优化训练策略乃至模型。我们的3D Faster RCNN 初期在Extended Caffe 上过于耗时,但因为在计算资源充足环境下我们的做法比较有效,所以没有去考虑一些更快的检测算法,比如SSD、YOLO等,这点也算是路径依赖的教训了。

代码开源说明:

我们在GitHub (github.com/YiYuanIntell ) 开源了核心代码,特别是将我们基于Intel Extended Caffe的3D Faster RCNN RPN训练模块发布到社区,相信这也是业内首个Intel extended Caffe版的150层网络3D Faster RCNN开源,希望对Intel 的深度学习社区用户有帮助。

该代码对医学影像的处理也展示了有效性,相信对医学影像领域AI实践的发展,对技术如何造福大众,能起到一些帮助。

通过开源,希望有同行提出性能优化、功能扩充等的修改建议,互相促进。

宜远智能是一家专注于大健康领域的AI创新企业,团队由多名AI博士、来自腾讯的算法高手、医疗领域专家构成。目前提供医学影像图像分析平台及服务。还提供专业皮肤AI方案以及基于阿里云市场的测肤API平台。对我们的开源代码及相关医学影像处理有任何疑问、建议、合作与求职意向,可联系:

tkots_wu@sina.com JohnnyGambler

csshshi@comp.hkbu.edu.hk 施少怀

End.

url:https://zhuanlan.zhihu.com/p/29984844

这篇关于缺陷检测-如何用深度学习进行CT影像肺结节探测(附有基于Intel Extended Caffe的3D Faster RCNN代码开源)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/349339

相关文章

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

Java中调用数据库存储过程的示例代码

《Java中调用数据库存储过程的示例代码》本文介绍Java通过JDBC调用数据库存储过程的方法,涵盖参数类型、执行步骤及数据库差异,需注意异常处理与资源管理,以优化性能并实现复杂业务逻辑,感兴趣的朋友... 目录一、存储过程概述二、Java调用存储过程的基本javascript步骤三、Java调用存储过程示

Visual Studio 2022 编译C++20代码的图文步骤

《VisualStudio2022编译C++20代码的图文步骤》在VisualStudio中启用C++20import功能,需设置语言标准为ISOC++20,开启扫描源查找模块依赖及实验性标... 默认创建Visual Studio桌面控制台项目代码包含C++20的import方法。右键项目的属性:

Golang如何对cron进行二次封装实现指定时间执行定时任务

《Golang如何对cron进行二次封装实现指定时间执行定时任务》:本文主要介绍Golang如何对cron进行二次封装实现指定时间执行定时任务问题,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录背景cron库下载代码示例【1】结构体定义【2】定时任务开启【3】使用示例【4】控制台输出总结背景

使用Python绘制3D堆叠条形图全解析

《使用Python绘制3D堆叠条形图全解析》在数据可视化的工具箱里,3D图表总能带来眼前一亮的效果,本文就来和大家聊聊如何使用Python实现绘制3D堆叠条形图,感兴趣的小伙伴可以了解下... 目录为什么选择 3D 堆叠条形图代码实现:从数据到 3D 世界的搭建核心代码逐行解析细节优化应用场景:3D 堆叠图

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

MySQL数据库的内嵌函数和联合查询实例代码

《MySQL数据库的内嵌函数和联合查询实例代码》联合查询是一种将多个查询结果组合在一起的方法,通常使用UNION、UNIONALL、INTERSECT和EXCEPT关键字,下面:本文主要介绍MyS... 目录一.数据库的内嵌函数1.1聚合函数COUNT([DISTINCT] expr)SUM([DISTIN

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实