R语言信用风险回归模型中交互作用的分析及可视化

2023-11-05 07:59

本文主要是介绍R语言信用风险回归模型中交互作用的分析及可视化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

全文链接:http://tecdat.cn/?p=21892

相关视频

引言

多元统计分析中,交互作用是指某因素作用随其他因素水平的不同而不同,两因素同时存在是的作用不等于两因素单独作用之和(相加交互作用)或之积(相乘交互作用)。通俗来讲就是,当两个或多个因素同时作用于一个结局时,就可能产生交互作用,又称为效应修饰作用(effect modification)。当两个因素同时存在时,所导致的效应(A)不等于它们单独效应相加(B+C)时,则称因素之间存在交互作用。当A=B+C时称不存在交互效应;当A>B+C时称存在正交互作用,又称协同作用(Synergy)。
在一个回归模型中,我们想写的是

dd319917cde3b43d89f57b2361b11552.png

当我们限制为线性模型时,我们写

451998b2d1e2aa87889e3b9e040d9a26.png

或者

55f7cd4741ce94610d2c971d7f42bf3d.png

但是我们怀疑是否缺少某些因素……比如,我们错过所有可能的交互影响。我们可以交互变量,并假设

4e6c05dbd1a992ec53bc71f58a429718.png

可以进一步扩展,达到3阶

512c2253d800e030718dc0265bcdc0cb.png

甚至更多。

假设我们的变量 Xi 在这里是定性的,更确切地说是二元的。

信贷数据

让我们举一个简单的例子,使用信贷数据集。

Credit数据是根据个人的银行贷款信息和申请客户贷款逾期发生情况来预测贷款违约倾向的数据集,数据集包含24个维度的,1000条数据。

该数据集将通过一组属性描述的人员分类为良好或不良信用风险。
数据集将通过一组属性描述的人员分类为良好或不良信用风险。

建立模型

我们读取数据

db=Credit

我们从三个解释变量开始,

reg=glm(Y~X1+X2+X3,data=db,family=binomial)
summary(reg)

没有交互的回归长这样

10d5d3d9b0c64422398cfe5c1e731b4c.png

这里有几种可能的交互作用(限制为成对的)。进行回归时观察到:

1fcd5626554a4e3afc6fdec6b954aa4e.png

交互关系可视化

我们可以画一幅图来可视化交互:我们有三个顶点(我们的三个变量),并且可视化了交互关系

plot(sommetX,sommetY,cex=1,axes=FALSE,xlab="",ylab="",for(i in 1:nrow(indices)){
segments(sommetX[indices[i,2]],sommetY[indices[i,2]],
text(mean(sommetX[indices[i,2:3]]),mean(sommetY[indices[i,2:3]]),
}text(sommetX,sommetY,1:k)

这给出了我们的三个变量

a438d19bdfcae1b812dbcf27ae002767.png

这个模型似乎是不完整的,因为我们仅成对地看待变量之间的相互作用。实际上,这是因为(在视觉上)缺少未交互的变量。我们可以根据需要添加它们


点击标题查阅往期内容

eb5d128043cb260786f2c07fbd8652e1.png

R语言VaR市场风险计算方法与回测、用LOGIT逻辑回归、PROBIT模型信用风险与分类模型

outside_default.png

左右滑动查看更多

outside_default.png

01

76017d16c72cd968f8815ccb266a8a86.png

02

e90a78145ba0dcdbf31c5641918e5e45.png

03

94c351bf9268fb57bfcc35b27405e395.png

04

a6791d2a1020e4ad0f23b439dee9dbdf.png

reg=glm(Y~X1+X2+X3+X1:X2+X1:X3+X2:X3,data=db,family=binomial)
k=3
theta=pi/2+2*pi*(0:(k-1))/k
plot(X,Y
for(i in 1:nrow(indices)){
segments(X[indices[i,2]],Y[indices[i,2]],
for(i in 1:k){
cercle(c(cos(theta)[i]*1.18,sin(theta)[i]*1.18),.18)
text(cos(theta)[i]*1.35,sin(theta)[i]*1.35,
points(X,Y,cex=6,pch=1)

这里得到

c9ce7cb6c4435eea39722cb84471b26b.png

如果我们更改变量的“_含义_”(通过重新编码,通过排列真值和假值),将获得下图

glm(Y~X1+X2+X3+X1:X2+X1:X3+X2:X3,data=dbinv,family=binomial)
plot(sommetX,sommetY,cex=1
for(i in 1:nrow(indices)){
segments(sommetX[indices[i,2]]
for(i in 1:k){
cercle(c(cos(theta)[i]*1.18,sin(theta)[i]*1.18)points(sommetX,sommetY,cex=6,pch=19)

然后可以将其与上一张图进行比较

9abe3caba5650b3a705124760b281246.png

使用5个变量,我们增加了可能的交互作用。

然后,我们修改前面的代码

formule="Y~1"
for(i in 1:k) formule=paste(formule,"+X",i,sep="")
for(i in 1:nrow(indices)) formule=paste(formule,"+X",indices[i,2],":X",indices[i,3],sep="")
reg=glm(formule,data=db,family=binomial)
plot(sommetX,sommetY,cex=1
for(i in 1:nrow(indices)){
segments(sommetX[indices[i,2]],sommetY[indices[i,2]],
for(i in 1:k){
cercle(c(cos(theta)[i]*1.18,sin(theta)[i]*1.18)
points(sommetX,sommetY,cex=6

给出了更复杂的图,

606609fde4b0b03ac8e19b296e9f8271.png

我们也可以只采用2个变量,分别取3和4种指标。为第一个提取两个指标变量(其余形式为参考形式),为第二个提取三个指标变量

formule="Y~1"
for(i in 1:k) formule=paste(formule,"+X",i,sep="")
for(i in 1:nrow(indices)formule=paste(formule,"+X",indices[i,2],":X",indices[i,3],sep="")
reg=glm(formule,data=db,family=binomial)
for(i in 1:nrow(indices){
if(!is.na(coefficients(reg)[1+k+i])){
segments(X[indices[i,2]],Y[indices[i,2]],
}
for(i in 1:k){
cercle(c(cos(theta)[i]*1.18,sin(theta)[i]*1.18),.18)
text(cos(theta)[i]*1.35,sin(theta)[i]*1.35,
}

我们看到,在左边的部分(相同变量的三种指标)和右边的部分不再有可能发生交互作用。

9ab28609e0e5816e73093f999cc334df.png

我们还可以通过仅可视化显著交互来简化图形。

for(i in 1:nrow(indices)){
if(!is.na(coefficients(reg)[1+k+i])){
if(summary(reg)$coefficients[1+k+i,4]<.1){

82189b3e4b5f9334ff78f508a281a335.png

在这里,只有一个交互作用是显著的,几乎所有的变量都是显著的。如果我们用5个因子重新建立模型,

for(i in 1:nrow(indices))
formule=paste(formule,"+X",indices[i,2],":X",indices[i,3],sep="")
reg=glm(formule,data=db,family=binomial)for(i in 1:nrow(indices){
if(!is.na(coefficients(reg)[1+k+i])){
if(summary(reg)$coefficients[1+k+i,4]<.1){

我们得到

8cfe2aebb58c4ccfde59cccb1a59ee0d.png


f752e90218c7a2b52b37d5cdadd1544e.jpeg

点击文末“阅读原文”

获取全文完整代码数据资料。

本文选自《R语言信用风险回归模型中交互作用的分析及可视化》。

b633faac64915120416fb803079bd2b0.jpeg

本文中的信贷数据分享到会员群,扫描下面二维码即可加群!

342508a8f908ba8ead965987e15b6313.png

点击标题查阅往期内容

R语言和STAN,JAGS:用RSTAN,RJAG建立贝叶斯多元线性回归预测选举数据

R语言中贝叶斯网络(BN)、动态贝叶斯网络、线性模型分析错颌畸形数据

使用贝叶斯层次模型进行空间数据分析

MCMC的rstan贝叶斯回归模型和标准线性回归模型比较

python贝叶斯随机过程:马尔可夫链Markov-Chain,MC和Metropolis-Hastings,MH采样算法可视化

Python贝叶斯推断Metropolis-Hastings(M-H)MCMC采样算法的实现

matlab贝叶斯隐马尔可夫hmm模型实现

贝叶斯线性回归和多元线性回归构建工资预测模型

Metropolis Hastings采样和贝叶斯泊松回归Poisson模型

贝叶斯分位数回归、lasso和自适应lasso贝叶斯分位数回归分析免疫球蛋白、前列腺癌数据

R语言RSTAN MCMC:NUTS采样算法用LASSO 构建贝叶斯线性回归模型分析职业声望数据

R语言STAN贝叶斯线性回归模型分析气候变化影响北半球海冰范围和可视化检查模型收敛性

PYTHON用户流失数据挖掘:建立逻辑回归、XGBOOST、随机森林、决策树、支持向量机、朴素贝叶斯和KMEANS聚类用户画像

贝叶斯分位数回归、lasso和自适应lasso贝叶斯分位数回归分析免疫球蛋白、前列腺癌数据

R语言JAGS贝叶斯回归模型分析博士生延期毕业完成论文时间

R语言Metropolis Hastings采样和贝叶斯泊松回归Poisson模型

Python决策树、随机森林、朴素贝叶斯、KNN(K-最近邻居)分类分析银行拉新活动挖掘潜在贷款客户

R语言贝叶斯MCMC:用rstan建立线性回归模型分析汽车数据和可视化诊断

R语言贝叶斯MCMC:GLM逻辑回归、Rstan线性回归、Metropolis Hastings与Gibbs采样算法实例

R语言贝叶斯Poisson泊松-正态分布模型分析职业足球比赛进球数

随机森林优化贝叶斯预测分析汽车燃油经济性

R语言逻辑回归、Naive Bayes贝叶斯、决策树、随机森林算法预测心脏病

R语言用Rcpp加速Metropolis-Hastings抽样估计贝叶斯逻辑回归模型的参数

R语言中的block Gibbs吉布斯采样贝叶斯多元线性回归

Python贝叶斯回归分析住房负担能力数据集

R语言实现贝叶斯分位数回归、lasso和自适应lasso贝叶斯分位数回归分析

Python用PyMC3实现贝叶斯线性回归模型

R语言用WinBUGS 软件对学术能力测验建立层次(分层)贝叶斯模型

R语言Gibbs抽样的贝叶斯简单线性回归仿真分析

R语言和STAN,JAGS:用RSTAN,RJAG建立贝叶斯多元线性回归预测选举数据

R语言基于copula的贝叶斯分层混合模型的诊断准确性研究

R语言贝叶斯线性回归和多元线性回归构建工资预测模型

R语言贝叶斯推断与MCMC:实现Metropolis-Hastings 采样算法示例

R语言stan进行基于贝叶斯推断的回归模型

R语言中RStan贝叶斯层次模型分析示例

R语言使用Metropolis-Hastings采样算法自适应贝叶斯估计与可视化

R语言随机搜索变量选择SSVS估计贝叶斯向量自回归(BVAR)模型

WinBUGS对多元随机波动率模型:贝叶斯估计与模型比较

R语言实现MCMC中的Metropolis–Hastings算法与吉布斯采样

R语言贝叶斯推断与MCMC:实现Metropolis-Hastings 采样算法示例

R语言使用Metropolis-Hastings采样算法自适应贝叶斯估计与可视化

视频:R语言中的Stan概率编程MCMC采样的贝叶斯模型

R语言MCMC:Metropolis-Hastings采样用于回归的贝叶斯估计

16064c117eaf67469a0a135ebb7e37bf.png

8eb8b08d699c4c9b1c2eedf1d2db0da5.jpeg

50fa08b645dfd0b988ade1a7fa10fe70.png

这篇关于R语言信用风险回归模型中交互作用的分析及可视化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/348485

相关文章

慢sql提前分析预警和动态sql替换-Mybatis-SQL

《慢sql提前分析预警和动态sql替换-Mybatis-SQL》为防止慢SQL问题而开发的MyBatis组件,该组件能够在开发、测试阶段自动分析SQL语句,并在出现慢SQL问题时通过Ducc配置实现动... 目录背景解决思路开源方案调研设计方案详细设计使用方法1、引入依赖jar包2、配置组件XML3、核心配

Git可视化管理工具(SourceTree)使用操作大全经典

《Git可视化管理工具(SourceTree)使用操作大全经典》本文详细介绍了SourceTree作为Git可视化管理工具的常用操作,包括连接远程仓库、添加SSH密钥、克隆仓库、设置默认项目目录、代码... 目录前言:连接Gitee or github,获取代码:在SourceTree中添加SSH密钥:Cl

Java NoClassDefFoundError运行时错误分析解决

《JavaNoClassDefFoundError运行时错误分析解决》在Java开发中,NoClassDefFoundError是一种常见的运行时错误,它通常表明Java虚拟机在尝试加载一个类时未能... 目录前言一、问题分析二、报错原因三、解决思路检查类路径配置检查依赖库检查类文件调试类加载器问题四、常见

Pandas中统计汇总可视化函数plot()的使用

《Pandas中统计汇总可视化函数plot()的使用》Pandas提供了许多强大的数据处理和分析功能,其中plot()函数就是其可视化功能的一个重要组成部分,本文主要介绍了Pandas中统计汇总可视化... 目录一、plot()函数简介二、plot()函数的基本用法三、plot()函数的参数详解四、使用pl

Python中的Walrus运算符分析示例详解

《Python中的Walrus运算符分析示例详解》Python中的Walrus运算符(:=)是Python3.8引入的一个新特性,允许在表达式中同时赋值和返回值,它的核心作用是减少重复计算,提升代码简... 目录1. 在循环中避免重复计算2. 在条件判断中同时赋值变量3. 在列表推导式或字典推导式中简化逻辑

使用Python实现矢量路径的压缩、解压与可视化

《使用Python实现矢量路径的压缩、解压与可视化》在图形设计和Web开发中,矢量路径数据的高效存储与传输至关重要,本文将通过一个Python示例,展示如何将复杂的矢量路径命令序列压缩为JSON格式,... 目录引言核心功能概述1. 路径命令解析2. 路径数据压缩3. 路径数据解压4. 可视化代码实现详解1

Python 交互式可视化的利器Bokeh的使用

《Python交互式可视化的利器Bokeh的使用》Bokeh是一个专注于Web端交互式数据可视化的Python库,本文主要介绍了Python交互式可视化的利器Bokeh的使用,具有一定的参考价值,感... 目录1. Bokeh 简介1.1 为什么选择 Bokeh1.2 安装与环境配置2. Bokeh 基础2

C语言中位操作的实际应用举例

《C语言中位操作的实际应用举例》:本文主要介绍C语言中位操作的实际应用,总结了位操作的使用场景,并指出了需要注意的问题,如可读性、平台依赖性和溢出风险,文中通过代码介绍的非常详细,需要的朋友可以参... 目录1. 嵌入式系统与硬件寄存器操作2. 网络协议解析3. 图像处理与颜色编码4. 高效处理布尔标志集合

Go语言开发实现查询IP信息的MCP服务器

《Go语言开发实现查询IP信息的MCP服务器》随着MCP的快速普及和广泛应用,MCP服务器也层出不穷,本文将详细介绍如何在Go语言中使用go-mcp库来开发一个查询IP信息的MCP... 目录前言mcp-ip-geo 服务器目录结构说明查询 IP 信息功能实现工具实现工具管理查询单个 IP 信息工具的实现服

C 语言中enum枚举的定义和使用小结

《C语言中enum枚举的定义和使用小结》在C语言里,enum(枚举)是一种用户自定义的数据类型,它能够让你创建一组具名的整数常量,下面我会从定义、使用、特性等方面详细介绍enum,感兴趣的朋友一起看... 目录1、引言2、基本定义3、定义枚举变量4、自定义枚举常量的值5、枚举与switch语句结合使用6、枚