Nelder-Mead算法(智能优化之下山单纯形法)

2023-11-05 05:30

本文主要是介绍Nelder-Mead算法(智能优化之下山单纯形法),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Nelder-Mead 算法是一种求多元函数局部最小值的算法,其优点是不需要函数可导并能较快收敛到局部最小值。

该算法需要提供函数自变量空间中的一个初始点x1,算法从该点出发寻找局部最小值

Nelder-Mead方法也称下山单纯形法,是由John Nelder & Roger Mead于1965年提出的一种求解数值优化问题的启发式搜索

给定n+1个顶点(i=1,2...,n+1),这些点对应的函数值为

开始按以下算法步骤进行,直到满足特定的精度条件或者循环次数时退出循环:


一、按照目标函数值对n+1个点进行从好到差排序,确定最坏点,第二最坏点和最好点

二、计算除去最差点外其他点的中心点

三、反射操作,计算反射点(就是最坏的点,C是第二步计算出的中心点,是反射系数,等于1)

  • 3.1若(意思是反射点的结果在最好点和第二差点之间)令(也 就是去掉了最坏点),并进入下一层循环。

  • 3.2若(意思是反射点的结果比最好的点还要好),计算拓展点

3.2.1若(意思是扩展点得到的结果比反射点要好),令,并进入下一 层循环

3.2.2否则(扩展失败的意思),进入下一层循环

  • 3.3若(意思是反射点的结果在最差点和第二差点之间且比最差点要 好)此时进行向外压缩操作,计算

3.3.1若(意思是向外压缩点比反射点结果要好),令(替换掉最 差点),并进入下一层循环

3.3.2否则执行最后一步

  • 3.4若(意思是反射点的结果比最差点还要糟糕),此时进行向内压缩操作,计算

3.4.1若,令,并进入下一层循环

3.4.2否则进入下一层循环

  • 3.5若上述四个条件都不符合,则令(i=2,...n+1),并且将赋值给并进入下一层循环

下面以二元函数为例,使用python编程

给定初始点:[0,0],[1.2,0],[0,0.8]

def func(x1, x2):return x1 * x1 - 4 * x1 + x2 * x2 - x2 - x1 * x2# 创建一个简单的二维数组
x = [[0, 0, 0], [1.2, 0, 0], [0, 0.8, 0]]
n = len(x)
m=0
for m in range(20):# 第一步,将这些点按照从小到大排序# 计算每个点对应的函数值for i in range(n):x[i][2] = func(x[i][0], x[i][1])# 按照目标函数值进行排序---从小到大排序for i in range(n - 1):for j in range(n - 1):if x[j][2] > x[j + 1][2]:temp = x[j]x[j] = x[j + 1]x[j + 1] = tempprint("第{}次循环得到的最优值为:".format(m),x[0])# 第二步,计算除去最坏点的其他点的中心点c = [0, 0, 0]  # 进行一个初始化c[0] = (x[0][0] + x[1][0]) / 2c[1] = (x[0][1] + x[1][1]) / 2c[2] = func(c[0], c[1])# 第三步进行反射操作,计算反射点xr = [0, 0, 0]xr[0] = 2 * c[0] - x[2][0]xr[1] = 2 * c[1] - x[2][1]xr[2] = func(xr[0], xr[1])if x[0][2] <= xr[2] < x[1][2]:x[2] = xrcontinueelif xr[2] < x[0][2]:xe = [0, 0, 0]xe[0] = 3 * c[0] - 2 * x[2][0]xe[1] = 3 * c[1] - 2 * x[2][1]xe[2] = func(xe[0], xe[1])if xe[2] < xr[2]:x[2] = xecontinueelse:x[2] = xrcontinueelif x[1][2] <= xr[2] < x[2][2]:c1 = [0, 0, 0]c1[0] = c[0] + (xr[0] - c[0]) / 2c1[1] = c[1] + (xr[1] - c[1]) / 2c1[2] = func(c1[0], c1[1])if c1[2] < xr[2]:x[2] = c1continueelse:passelif x[2][2] <= xr[2]:c2 = [0, 0, 0]c2[0] = c[0] + (x[2][0] - c[0])c2[1] = c[1] + (x[2][1] - c[1])c2[2]=func(c2[0],c2[1])if c2[2]<x[2][2]:x[2]=c2continueelse:passi=1for i in range(n):x[i][0]=x[0][0]+(x[i][0]-x[0][0])/2x[i][1] = x[0][1] + (x[i][1] - x[0][1]) / 2x[i][2]=func(x[i][0],x[i][1])continue

运行结果如下图所示:

这篇关于Nelder-Mead算法(智能优化之下山单纯形法)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/347720

相关文章

基于Python实现智能天气提醒助手

《基于Python实现智能天气提醒助手》这篇文章主要来和大家分享一个实用的Python天气提醒助手开发方案,这个工具可以方便地集成到青龙面板或其他调度框架中使用,有需要的小伙伴可以参考一下... 目录项目概述核心功能技术实现1. 天气API集成2. AI建议生成3. 消息推送环境配置使用方法完整代码项目特点

JavaScript实战:智能密码生成器开发指南

本文通过JavaScript实战开发智能密码生成器,详解如何运用crypto.getRandomValues实现加密级随机密码生成,包含多字符组合、安全强度可视化、易混淆字符排除等企业级功能。学习密码强度检测算法与信息熵计算原理,获取可直接嵌入项目的完整代码,提升Web应用的安全开发能力 目录

利用Python实现Excel文件智能合并工具

《利用Python实现Excel文件智能合并工具》有时候,我们需要将多个Excel文件按照特定顺序合并成一个文件,这样可以更方便地进行后续的数据处理和分析,下面我们看看如何使用Python实现Exce... 目录运行结果为什么需要这个工具技术实现工具的核心功能代码解析使用示例工具优化与扩展有时候,我们需要将

SpringBoot中HTTP连接池的配置与优化

《SpringBoot中HTTP连接池的配置与优化》这篇文章主要为大家详细介绍了SpringBoot中HTTP连接池的配置与优化的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录一、HTTP连接池的核心价值二、Spring Boot集成方案方案1:Apache HttpCl

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

PyTorch高级特性与性能优化方式

《PyTorch高级特性与性能优化方式》:本文主要介绍PyTorch高级特性与性能优化方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、自动化机制1.自动微分机制2.动态计算图二、性能优化1.内存管理2.GPU加速3.多GPU训练三、分布式训练1.分布式数据

MySQL中like模糊查询的优化方案

《MySQL中like模糊查询的优化方案》在MySQL中,like模糊查询是一种常用的查询方式,但在某些情况下可能会导致性能问题,本文将介绍八种优化MySQL中like模糊查询的方法,需要的朋友可以参... 目录1. 避免以通配符开头的查询2. 使用全文索引(Full-text Index)3. 使用前缀索

C#实现高性能Excel百万数据导出优化实战指南

《C#实现高性能Excel百万数据导出优化实战指南》在日常工作中,Excel数据导出是一个常见的需求,然而,当数据量较大时,性能和内存问题往往会成为限制导出效率的瓶颈,下面我们看看C#如何结合EPPl... 目录一、技术方案核心对比二、各方案选型建议三、性能对比数据四、核心代码实现1. MiniExcel

Springboot实现推荐系统的协同过滤算法

《Springboot实现推荐系统的协同过滤算法》协同过滤算法是一种在推荐系统中广泛使用的算法,用于预测用户对物品(如商品、电影、音乐等)的偏好,从而实现个性化推荐,下面给大家介绍Springboot... 目录前言基本原理 算法分类 计算方法应用场景 代码实现 前言协同过滤算法(Collaborativ

基于Python打造一个智能单词管理神器

《基于Python打造一个智能单词管理神器》这篇文章主要为大家详细介绍了如何使用Python打造一个智能单词管理神器,从查询到导出的一站式解决,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 项目概述:为什么需要这个工具2. 环境搭建与快速入门2.1 环境要求2.2 首次运行配置3. 核心功能使用指