Python | 计算中国5°×5°方格 年总降水

2023-11-05 05:20

本文主要是介绍Python | 计算中国5°×5°方格 年总降水,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

0.写在前面

继续学习站点数据处理ing,这是上周第一个任务,一共三个,写三篇(或者四篇)来记录。

任务一:将中国和部分周围区域划分为5°×5°的格子,计算每个格子内的年降水。

难点:依次读取文件夹中数据

解决办法:遍历每天的站点,找到他属于哪个方格,先计算每天每方格内所有站点的平均,再把每天的降水二维数组加起来(365天)

所用数据:2014年365天SURF_CHN_MUL_DAY_2014****格式数据,每个文件是每天所有站点的气象要素记录

1.代码解析

1.1 主函数

path = r"D:2014-2020\2014"
files= os.listdir(path)k=1  #k可以用来控制读取文件数量
yearsum=np.zeros([5,14],dtype=float,order='C') #yearsum用来记录总降水
for filename in files:  #依次读取文件夹中的文件df = pd.read_table(os.path.join(path,filename),sep='\t',header=None)day=dave(df)   #dave函数用来求每天的平均降水(对站点降水求平均)yearsum=yearsum+dayk=k+1draw(yearsum) #draw函数负责可视化年降水

1.2 dave函数

def dave(df):lat = df[64]del lat[0]  #lat[0]是表头,要删掉,自己摸索的时候可以一步一步输出试试lat=lat.astype(float) #改变数据格式lon = df[66]del lon[0]lon=lon.astype(float)pre=df[72]del pre[0]pre=pre.astype(float) #999999是缺测,不算降水,0算daypre=np.zeros([5,14],dtype=float,order='C') #每个小方格站点总降水daysta=np.zeros([5,14],dtype=float,order='C') #站点数,缺测不算for m in range(1,(len(lat)+1)): #遍历一天内所有站点if lat[m]<55 and lat[m]>=30 and lon[m]>=70 and lon[m]<140:a=lat[m]i=4-int(((a-30)//5))b=lon[m]j=int(((b-70)//5))if pre[m]<500: #如果没有缺测daysta[i][j]=daysta[i][j]+1daypre[i][j]=daypre[i][j]+pre[m]dayave=np.zeros([5,14],dtype=float,order='C') #每天平均降水for i in range(0,5):for j in range(0,14):if daysta[i][j]!=0:dayave[i][j]=daypre[i][j]/daysta[i][j]return dayave 

1.3 draw函数

def draw(ave):  #还是之前的老一套,有疑问可评论fig = plt.figure(1, figsize=[16, 9])proj = ccrs.PlateCarree()ax = plt.subplot(1, 1, 1, projection=proj)extent = [70, 140, 30, 55]ax.set(xlim=(70,140),ylim=(30,55))ds = xr.open_dataset(r"D:\地形图\ETOPO2v2c_f4.nc")lon = np.linspace(min(ds['x'].data), max(ds['x'].data), len(ds['x'].data))  # 经度lat = np.linspace(min(ds['y'].data), max(ds['y'].data), len(ds['y'].data))  # 纬度dem = ds['z'].data# 构建经纬网格lon, lat = np.meshgrid(lon, lat)ax.set(xlim=(70,140),ylim=(30,55))
# 创建底图,设置地图投影为World Plate Carrée,分辨率为高分辨率levels = [-8000, -6000, -4000, -2000, -1000, -200, -50, 0, 50,200, 500, 1000, 1500, 2000, 3000, 4000, 5000, 6000, 7000, 8000]# 创建分级color = ['#084594', '#2171b5', '#4292c6', '#6baed6', '#9ecae1', '#c6dbef', '#deebf7', '#006837','#31a354', '#78c679', '#addd8e', '#d9f0a3', '#f7fcb9', '#c9bc87', '#a69165', '#856b49','#664830', '#ad9591', '#d7ccca']  # 设置色带,19个颜色cf = ax.contourf(lon, lat, dem, levels=levels, colors=color, extend='both',zorder=1)china = shpreader.Reader(r"D:\bou2_4l\bou2_4l.dbf").geometries()plt.title('2014年降水总量', fontsize=20,pad=20)ax.add_geometries(china, ccrs.PlateCarree(),facecolor='none', edgecolor='black', zorder=2) ax.add_geometries(Reader(r"D:\1~5级水系矢量图\river\1级河流.shp").geometries(), ccrs.PlateCarree(), facecolor='none', edgecolor='RoyalBlue', linewidth=0.4)             c=np.ones([5,14],dtype=float,order='C')alpha=np.where(ave!=0,c*0.7,0)  #这里是把没有降水的地方透明度设为0了,作图就不显示plt.imshow(ave,cmap='rainbow',extent=(70,140,30,55),alpha=alpha,zorder=3)cb=plt.colorbar(shrink=0.5)cb.set_label('单位:mm',fontsize=12)ax.set_xticks(np.arange(extent[0], extent[1]+1, 10), crs=proj)ax.set_yticks(np.arange(extent[-2], extent[-1]+1, 5), crs=proj)ax.xaxis.set_major_formatter(LongitudeFormatter(zero_direction_label=False))ax.yaxis.set_major_formatter(LatitudeFormatter())plt.tick_params(labelsize=12)plt.show()

2. 完整代码

from importlib.resources import path
import os
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from cartopy.io.shapereader import Reader
from cartopy.io import shapereader as shpreader
from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter
import cartopy.crs as ccrs
import time
import xarray as xrtime_start = time.time()
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = Falsedef dave(df):lat = df[64]del lat[0]lat=lat.astype(float)lon = df[66]del lon[0]lon=lon.astype(float)pre=df[72]del pre[0]pre=pre.astype(float)daypre=np.zeros([5,14],dtype=float,order='C')daysta=np.zeros([5,14],dtype=float,order='C') for m in range(1,(len(lat)+1)): if lat[m]<55 and lat[m]>=30 and lon[m]>=70 and lon[m]<140:a=lat[m]i=4-int(((a-30)//5))b=lon[m]j=int(((b-70)//5))if pre[m]<500:daysta[i][j]=daysta[i][j]+1daypre[i][j]=daypre[i][j]+pre[m]dayave=np.zeros([5,14],dtype=float,order='C') for i in range(0,5):for j in range(0,14):if daysta[i][j]!=0:dayave[i][j]=daypre[i][j]/daysta[i][j]return dayave def draw(ave):fig = plt.figure(1, figsize=[16, 9])proj = ccrs.PlateCarree()ax = plt.subplot(1, 1, 1, projection=proj)extent = [70, 140, 30, 55]ax.set(xlim=(70,140),ylim=(30,55))ds = xr.open_dataset( r"D:\地形图\ETOPO2v2c_f4.nc")lon = np.linspace(min(ds['x'].data), max(ds['x'].data), len(ds['x'].data))  # 经度lat = np.linspace(min(ds['y'].data), max(ds['y'].data), len(ds['y'].data))  # 纬度dem = ds['z'].datalon, lat = np.meshgrid(lon, lat)ax.set(xlim=(70,140),ylim=(30,55))levels = [-8000, -6000, -4000, -2000, -1000, -200, -50, 0, 50,200, 500, 1000, 1500, 2000, 3000, 4000, 5000, 6000, 7000, 8000]color = ['#084594', '#2171b5', '#4292c6', '#6baed6', '#9ecae1', '#c6dbef', '#deebf7', '#006837','#31a354', '#78c679', '#addd8e', '#d9f0a3', '#f7fcb9', '#c9bc87', '#a69165', '#856b49','#664830', '#ad9591', '#d7ccca']  # 设置色带,19个颜色cf = ax.contourf(lon, lat, dem, levels=levels, colors=color, extend='both',zorder=1)china = shpreader.Reader(r"D:\bou2_4l\bou2_4l.dbf").geometries()plt.title('2014年降水总量', fontsize=20,pad=20)ax.add_geometries(china, ccrs.PlateCarree(),facecolor='none', edgecolor='black', zorder=2)  ax.add_geometries(Reader(r"D:\1~5级水系矢量图\river\1级河流.shp").geometries(), ccrs.PlateCarree(), facecolor='none', edgecolor='RoyalBlue', linewidth=0.4)             c=np.ones([5,14],dtype=float,order='C')alpha=np.where(ave!=0,c*0.7,0)plt.imshow(ave,cmap='rainbow',extent=(70,140,30,55),alpha=alpha,zorder=3)cb=plt.colorbar(shrink=0.5)cb.set_label('单位:mm',fontsize=12)ax.set_xticks(np.arange(extent[0], extent[1]+1, 10), crs=proj)ax.set_yticks(np.arange(extent[-2], extent[-1]+1, 5), crs=proj)ax.xaxis.set_major_formatter(LongitudeFormatter(zero_direction_label=False))ax.yaxis.set_major_formatter(LatitudeFormatter())plt.tick_params(labelsize=12)plt.show()path = r"D:\2014-2020\2014"
files= os.listdir(path)
k=1
yearsum=np.zeros([5,14],dtype=float,order='C')
for filename in files:df = pd.read_table(os.path.join(path,filename),sep='\t',header=None)day=dave(df)yearsum=yearsum+dayk=k+1draw(yearsum)time_end = time.time()  # 记录结束时间
time_sum = time_end - time_start  # 计算的时间差为程序的执行时间,单位为秒/s
print('运行时间:',time_sum)

成图:

 

这篇关于Python | 计算中国5°×5°方格 年总降水的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/347670

相关文章

使用Python创建一个功能完整的Windows风格计算器程序

《使用Python创建一个功能完整的Windows风格计算器程序》:本文主要介绍如何使用Python和Tkinter创建一个功能完整的Windows风格计算器程序,包括基本运算、高级科学计算(如三... 目录python实现Windows系统计算器程序(含高级功能)1. 使用Tkinter实现基础计算器2.

Python开发文字版随机事件游戏的项目实例

《Python开发文字版随机事件游戏的项目实例》随机事件游戏是一种通过生成不可预测的事件来增强游戏体验的类型,在这篇博文中,我们将使用Python开发一款文字版随机事件游戏,通过这个项目,读者不仅能够... 目录项目概述2.1 游戏概念2.2 游戏特色2.3 目标玩家群体技术选择与环境准备3.1 开发环境3

Python中模块graphviz使用入门

《Python中模块graphviz使用入门》graphviz是一个用于创建和操作图形的Python库,本文主要介绍了Python中模块graphviz使用入门,具有一定的参考价值,感兴趣的可以了解一... 目录1.安装2. 基本用法2.1 输出图像格式2.2 图像style设置2.3 属性2.4 子图和聚

windows和Linux使用命令行计算文件的MD5值

《windows和Linux使用命令行计算文件的MD5值》在Windows和Linux系统中,您可以使用命令行(终端或命令提示符)来计算文件的MD5值,文章介绍了在Windows和Linux/macO... 目录在Windows上:在linux或MACOS上:总结在Windows上:可以使用certuti

Python使用Matplotlib绘制3D曲面图详解

《Python使用Matplotlib绘制3D曲面图详解》:本文主要介绍Python使用Matplotlib绘制3D曲面图,在Python中,使用Matplotlib库绘制3D曲面图可以通过mpl... 目录准备工作绘制简单的 3D 曲面图绘制 3D 曲面图添加线框和透明度控制图形视角Matplotlib

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

基于Python打造一个智能单词管理神器

《基于Python打造一个智能单词管理神器》这篇文章主要为大家详细介绍了如何使用Python打造一个智能单词管理神器,从查询到导出的一站式解决,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 项目概述:为什么需要这个工具2. 环境搭建与快速入门2.1 环境要求2.2 首次运行配置3. 核心功能使用指

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句