线上千万级大表排序该如何优化?

2023-11-04 22:20

本文主要是介绍线上千万级大表排序该如何优化?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

  前段时间应急群有客服反馈,会员管理功能无法按到店时间、到店次数、消费金额 进行排序。经过排查发现是Sql执行效率低,并且索引效率低下。遇到这样的情况我们该如何处理呢?今天我们聊一聊Mysql大表查询优化。

应急问题

  商户反馈会员管理功能无法按到店时间、到店次数、消费金额 进行排序,一直转圈圈或转完无变化,商户要以此数据来做活动,比较着急,请尽快处理,谢谢。

线上数据量

merchant_member_info 7000W条数据。
member_info 3000W。

不要问我为什么不分表,改动太大,无能为力。

问题SQL如下

SELECTmui.id,mui.merchant_id,mui.member_id,DATE_FORMAT(mui.recently_consume_time,'%Y%m%d%H%i%s') recently_consume_time,IFNULL(mui.total_consume_num, 0) total_consume_num,IFNULL(mui.total_consume_amount, 0) total_consume_amount,(CASEWHEN u.nick_name IS NULL THEN'会员'WHEN u.nick_name = '' THEN'会员'ELSEu.nick_nameEND) AS 'nickname',u.sex,u.head_image_url,u.province,u.city,u.country
FROMmerchant_member_info mui
LEFT JOIN member_info u ON mui.member_id = u.id
WHERE1 = 1
AND mui.merchant_id = '商户编号'
ORDER BYmui.recently_consume_time DESC / ASC
LIMIT 0,10

出现的原因

  经过验证可以按照“到店时间”进行降序排序,但是无法按照升序进行排序主要是查询太慢了。主要原因是:虽然该查询使用建立了recently_consume_time索引,但是索引效率低下,需要查询整个索引树,导致查询时间过长。

DESC 查询大概需要4s,ASC 查询太慢耗时未知。

为什么降序排序快和而升序慢呢?

  因为是对时间建立了索引,最近的时间一定在最后面,升序查询,需要查询更多的数据,才能过滤出相应的结果,所以慢。

解决方案

目前生产库的索引

调整索引

  需要删除index_merchant_user_last_time索引,同时将index_merchant_user_merchant_ids单例索引,变为 merchant_id,recently_consume_time组合索引。

调整结果(准生产)

调整前后结果对比(准生产)

 测试数据

merchant_member_info 有902606条记录。
member_info 表有775条记录。

SQL执行效率

优化前

优化后

type由index -> ref

ref由 null -> const

TOP优化前优化后
到店时间-降序0.274s0.003s
到店时间-升序11.245s0.003s

调整索引需要执行的SQL

执行的注意事项:
由于表中的数据量太大,请在晚上进行执行,并且需要分开执行。 # 删除近期消费时间索引
ALTER TABLE merchant_member_info DROP INDEX index_merchant_user_last_time;# 删除商户编号索引
ALTER TABLE merchant_member_info DROP INDEX index_merchant_user_merchant_ids;# 建立商户编号和近期消费时间组合索引
ALTER TABLE merchant_member_info ADD INDEX idx_merchant_id_recently_time (`merchant_id`,`recently_consume_time`);

经询问,重建索引花了30分钟。

最终的分页查询优化

  上面的sql虽然经过调整索引,虽然能达到较高的执行效率,但是随着分页数据的不断增加,性能会急剧下降。

分页数据查询时间优化后
limit 0,100.003s0.002s
limit 10,100.005s0.002s
limit 100,100.009s0.002s
limit 1000,100.044s0.004s
limit 9000,100.247s0.016s
最终的sql

优化思路:先走覆盖索引定位到,需要的数据行的主键值,然后INNER JOIN 回原表,取到其他数据。

SELECTmui.id,mui.merchant_id,mui.member_id,DATE_FORMAT(mui.recently_consume_time,'%Y%m%d%H%i%s') recently_consume_time,IFNULL(mui.total_consume_num, 0) total_consume_num,IFNULL(mui.total_consume_amount, 0) total_consume_amount,(CASEWHEN u.nick_name IS NULL THEN'会员'WHEN u.nick_name = '' THEN'会员'ELSEu.nick_nameEND) AS 'nickname',u.sex,u.head_image_url,u.province,u.city,u.country
FROMmerchant_member_info mui
INNER JOIN (SELECTidFROMmerchant_member_infoWHEREmerchant_id = '商户ID'ORDER BYrecently_consume_time DESCLIMIT 9000,10
) AS tmp ON tmp.id = mui.id
LEFT JOIN member_info u ON mui.member_id = u.id

结尾

  如果觉得对你有帮助,可以多多评论,多多点赞哦,也可以到我的主页看看,说不定有你喜欢的文章,也可以随手点个关注哦,谢谢。

  我是不一样的科技宅,每天进步一点点,体验不一样的生活。我们下期见!

这篇关于线上千万级大表排序该如何优化?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/345558

相关文章

JAVA实现亿级千万级数据顺序导出的示例代码

《JAVA实现亿级千万级数据顺序导出的示例代码》本文主要介绍了JAVA实现亿级千万级数据顺序导出的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 前提:主要考虑控制内存占用空间,避免出现同时导出,导致主程序OOM问题。实现思路:A.启用线程池

Docker多阶段镜像构建与缓存利用性能优化实践指南

《Docker多阶段镜像构建与缓存利用性能优化实践指南》这篇文章将从原理层面深入解析Docker多阶段构建与缓存机制,结合实际项目示例,说明如何有效利用构建缓存,组织镜像层次,最大化提升构建速度并减少... 目录一、技术背景与应用场景二、核心原理深入分析三、关键 dockerfile 解读3.1 Docke

线上Java OOM问题定位与解决方案超详细解析

《线上JavaOOM问题定位与解决方案超详细解析》OOM是JVM抛出的错误,表示内存分配失败,:本文主要介绍线上JavaOOM问题定位与解决方案的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一、OOM问题核心认知1.1 OOM定义与技术定位1.2 OOM常见类型及技术特征二、OOM问题定位工具

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Python实战之SEO优化自动化工具开发指南

《Python实战之SEO优化自动化工具开发指南》在数字化营销时代,搜索引擎优化(SEO)已成为网站获取流量的重要手段,本文将带您使用Python开发一套完整的SEO自动化工具,需要的可以了解下... 目录前言项目概述技术栈选择核心模块实现1. 关键词研究模块2. 网站技术seo检测模块3. 内容优化分析模

Java实现复杂查询优化的7个技巧小结

《Java实现复杂查询优化的7个技巧小结》在Java项目中,复杂查询是开发者面临的“硬骨头”,本文将通过7个实战技巧,结合代码示例和性能对比,手把手教你如何让复杂查询变得优雅,大家可以根据需求进行选择... 目录一、复杂查询的痛点:为何你的代码“又臭又长”1.1冗余变量与中间状态1.2重复查询与性能陷阱1.

Python内存优化的实战技巧分享

《Python内存优化的实战技巧分享》Python作为一门解释型语言,虽然在开发效率上有着显著优势,但在执行效率方面往往被诟病,然而,通过合理的内存优化策略,我们可以让Python程序的运行速度提升3... 目录前言python内存管理机制引用计数机制垃圾回收机制内存泄漏的常见原因1. 循环引用2. 全局变

Python多线程应用中的卡死问题优化方案指南

《Python多线程应用中的卡死问题优化方案指南》在利用Python语言开发某查询软件时,遇到了点击搜索按钮后软件卡死的问题,本文将简单分析一下出现的原因以及对应的优化方案,希望对大家有所帮助... 目录问题描述优化方案1. 网络请求优化2. 多线程架构优化3. 全局异常处理4. 配置管理优化优化效果1.

MySQL中优化CPU使用的详细指南

《MySQL中优化CPU使用的详细指南》优化MySQL的CPU使用可以显著提高数据库的性能和响应时间,本文为大家整理了一些优化CPU使用的方法,大家可以根据需要进行选择... 目录一、优化查询和索引1.1 优化查询语句1.2 创建和优化索引1.3 避免全表扫描二、调整mysql配置参数2.1 调整线程数2.

C++归并排序代码实现示例代码

《C++归并排序代码实现示例代码》归并排序将待排序数组分成两个子数组,分别对这两个子数组进行排序,然后将排序好的子数组合并,得到排序后的数组,:本文主要介绍C++归并排序代码实现的相关资料,需要的... 目录1 算法核心思想2 代码实现3 算法时间复杂度1 算法核心思想归并排序是一种高效的排序方式,需要用