粒子滤波器/卡尔曼滤波局限/状态空间模型/蒙特卡罗方法/重要性采样/重要密度函数/重采样/粒子退化 的核心思想+ Matlab代码

本文主要是介绍粒子滤波器/卡尔曼滤波局限/状态空间模型/蒙特卡罗方法/重要性采样/重要密度函数/重采样/粒子退化 的核心思想+ Matlab代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

--》是递归贝叶斯滤波的一种实现

--》以高计算量为代价换取能表示任何一种分布形式

--》用随机样本表示,用一组加权样本表示后验

--》在局部化的背景下,粒子根据运动模型进行传播,然后根据观察结果的可能性对它们进行加权,在重新采样的步骤中,新粒子的绘制概率与观察到的可能性成正比

--》从存储成本和对不断变化的信号特性的快速适应的角度来看,可以实现数据到达时进行实时处理

--》用于对非线性( nonlinear )非高斯(non-Gaussian模型的估计

 

粒子滤波器思想:用测量更新权重,根据权重来重采样,用模型来在空间转移粒子。

目标跟踪问题/状态空间模型

h表示对真实值x的一种有规律的扭曲,所以观测是扭曲过的真实加上噪声。

关于系统模型:为什么只用系统模型不能完全表征目标的方位?--》因为由噪声:在GPS中可以理解为汽车的飘移或者因为违停而被脱走的汽车(绑架机器人)。

说到噪声,这里提一下最小二乘的思想:对于线性模型: y=h*x+v , 很自然的想到,我们要想获得最准确的估计值,我们可以求Σ(y-h*x)^2,当它达到最小时,我们的估计值最接近真实值,这里可以理解为一种对(向量)x的遍历,然后让真实值和我们的观测相匹配。

 

卡尔曼滤波器的局限

卡尔曼滤波器利用了高斯分布是共轭分布的性质,或者说高斯分布是一个能被参数化的分布,粒子滤波器是对非参数化分布的一种表示形式。当模型和数据是非线性时,用卡尔曼滤波器会得到一些奇怪的非高斯分布。一些算法可以将非线性系统投影成线性系统。

 

蒙特卡洛方法(Monte Carlo method)

蒙特卡洛方法是一种对随机变量数字特征的估计方法,可以简单理解为他是在样点和参数之间的一种转换:

从概率分布产生样点《——》从样点建立参数分布

 

概率质量函数(Probability mass function):正因为这样才能代表非高斯分布——那些不能用公式准确描述形容的分布,通过散点避免了线性的问题。

 

重要性采样( Importance Sampling ):

核心思想:形容如何给点赋予权值。

Q是已知的分布,也叫重要性概率密度函数。

权重的积分为1(归一化),粒子点数越多,对概率的拟合程度越好,当点数无限多时,概率质量分布PMF就是概率分布PDF了。

我们知道粒子滤波器用加权粒子来表示概率分布,那么我们如何获得这些粒子呢?

如果是某分布高斯分布,由于它是参数化的方法,会有其专门的生成算法,比如想生成10个符合标准正态分布N~(0,1)的粒子,可以用matlab函数: 1*randn(1,10);

那其他分布呢?我们这时就用到了importance sampling

通过产生一个已知的参数化分布,然后考虑这个已知的参数分布和未知非参数化分布(目标)的差异——即是权重,具体做法是:

权重w(i)=非参数化分布在某处的值p(i)/参数化已知分布对应的值q(i)

这样用参数化已知分布*权重即是非参数化目标分布对应的概率密度(或者说是分布),所以以这种方法可以生成对应分布的点。

权重相当于对已知概率分布进行变形。

对于目标运动模型,我们可以基于运动和观察,通过预测步骤从这个容易发生样本参数化分布q中抽取样本,我可以很。

通过系统运动模型和观测模型,预测(prediction)通过系统运动模型,从容易建立样点、已知的参数分布产生点;然后用观测方程来作更正(correction

Wtj=targettj/proposaltj,这里tj=kiki个,重采样就是要利用大权重(概率)的点来生成下一次的点,而舍弃那些权重小的点。

简单来说,就是通过已知参数分布(高斯)来生成点,然后根据非参数分布的对应点的PMF和高斯对应位置的PDF之间的差异(权重w)来给生成的这些点来赋值,此时要注意对应关系。

重要密度函数q的选择(Good Choice of Importance Density)

重要密度函数的作用:概率转移、后验搬移,可以理解为一种对概率密度(点的权重)刷新的方法。

选择重要性概率密度函数的一个标准是使得粒子权值{w(k)(i)}(i=1:N)的方差最小,这表示的是“不确定中的确定性”的含义。

通常可以选择状态变量的转移概率密度函数p(x(k) | x(k-1))作为重要性概率密度函数q,此时粒子的权值是:

w(k)(i) = w(k-1)(i) * p(y(k) | x(k)(i))

这个式子中的w是权值,p可以理解为贝叶斯公式中的似然函数,这里是用围绕观测y产生的“似然函数”将对应粒子的权值进行刷新。

因此通过q围绕着观测y生成的,而w衡量了q与通过系统运动模型生成的p的关系,可以近似理解为他俩越接近的点的权值越大.

重采样方(Resampling)

核心思想:让我们的概率密度分布更加紧凑地分布于可能性更大地点上.

需要重采样是因为本质上是因为我们的点数是有限的(由于计算机的计算能力有限,我们只能表示有限个点),当有些粒子去了概率为0(权值低)的区域时,我们就认为它们不好(Bad),所以我们应该将Bad点舍弃,而保留那些在概率高的(权值高的)区域的点,并且新生成的点被赋予相同权值,然后开始下一次递归。这就是所谓的适者生存——survival of the fittest principle.

如果点数无穷、计算能力无穷的话就不存在resample,因为假设只有1%的点是有效点的话,有效点的数量为(0.01*∞)=∞,依旧能保持点数的丰富性,而点数有限。而如果计算能力有限、点数有限还不重采样的话,那么就无法长时间分析系统(跟踪目标),因为这种情况下粒子滤波器会发散,发散的原因是误差积累,每一次进行计算生成点时都会产生误差,这些误差会积累并且不可逆(无法恢复),除非有无限个点。

举个例子:考虑函数y=x^100,若x是连续的话,则点数也连续,即不存在误差(可以认为连续情况属于一种遍历,把有噪声作用的情况也遍历了),而若x是离散的话,本来x=2处的点对应y=2^100,这时有了0.1的误差,y=2.1)^100,这种误差是非常大的,而且你下一次计算时还会有新误差,这两次误差一积累,就会造成更大的误差。

粒子退化(sample impoverishment

粒子退化与权值退化的区别:权值退化是说计算量的问题,减少无效计算,而粒子退化是形容多样性。

 

 

粒子滤波器Matlab仿真效果和代码

%% 
clear all
close all
clc

%% 初始化变量
set(0,'DefaultFigureWindowStyle','docked') 
x = 0.1;
x_N = 1; 
x_R = 1; 
T = 75; 
N = 100;

V = 2; 
x_P = [];

for i = 1:N%围绕x=0.1生成先验粒子
    x_P(i) = x + sqrt(V) * randn;
end


figure(1)
clf
subplot(121)
plot(1,x_P,'.k','markersize',5)
xlabel('time step')
ylabel('flight position')
subplot(122)
hist(x_P,100)
xlabel('flight position')
ylabel('count')
pause

z_out = [x^2 / 20 + sqrt(x_R) * randn];  
x_out = [x];  
x_est = [x]; 
x_est_out = [x_est]; 
%把均值当作估计值

for t = 1:T
    
    x = 0.5*x + 25*x/(1 + x^2) + 8*cos(1.2*(t-1)) +  sqrt(x_N)*randn;%真实非线性运动方程
    z = x^2/20 + sqrt(x_R)*randn;%我们通过观测方程观测
    %Here, we do the particle filter,生成点
    for i = 1:N
        % 根据上一次的N个粒子(prior)x_P,和非线性控制,生成下一次的粒子
        x_P_update(i) = 0.5*x_P(i) + 25*x_P(i)/(1 + x_P(i)^2) + 8*cos(1.2*(t-1)) + sqrt(x_N)*randn;
        %根据x_P_update和观测方程生成对应观测z_update
        z_update(i) = x_P_update(i)^2/20;
        %虽然观测到了z,但是不能认为z就是真实值,用观测真值z计算每个z_update中粒子的权重,权值赋予依据是似然函数q,算是一种对产生点的考核
        P_w(i) = (1/sqrt(2*pi*x_R)) * exp(-(z - z_update(i))^2/(2*x_R));
    end
    
    P_w = P_w./sum(P_w);
    
    %画出由上一次的粒子生成的点和由观测方程生成的每个点的观测
    figure(1)
    clf
    subplot(221)
    plot(0,x_P_update,'.k','markersize',5)
    title('raw estimates')
    xlabel('fixed time point')
    ylabel('estimated particles for  position')
    subplot(222)%对应粒子的权重
    plot(P_w,z_update,'.k','markersize',5)
    hold on
    plot(0,z,'.r','markersize',50)
    xlabel('weight magnitude')
    ylabel('observed values (z update)')    
    subplot(223)%粒子的权重
    plot(P_w,x_P_update,'.k','markersize',5)
    hold on
    plot(0,x,'.r','markersize',50)
    xlabel('weight magnitude')
    ylabel('updated particle positions (x P update)')
    
    %% 重采样
    
    for i = 1 : N
        x_P(i) = x_P_update(find(rand <= cumsum(P_w),1))%这是一种方法:计算累加权重值,令其大于随机数,在平均意义上剔除小的权值所所对应的x_P_update
        
    end
    
    x_est = mean(x_P);%对重采样后的点均值作为估计
     
    subplot(224)%
    plot(0,x_P_update,'.k','markersize',5)%重采样前的点用黑色小点画出
    hold on
    plot(0,x_P,'.r','markersize',5)%重采样后的点用红色小点点画出
    plot(0,x,'.r','markersize',50)%仿真的真实值值用绿色大点画出
    plot(0,x_est,'.g','markersize',40)%我们的估计值用绿色大点画出
    xlabel('fixed  time point')
    title('weight based resampling')

    x_out = [x_out x];
    z_out = [z_out z];
    x_est_out = [x_est_out x_est];
    drawnow;
end

t = 0:T;
figure(1);
clf
plot(t, x_out, '.-b', t, x_est_out, '-.r','linewidth',3);%真实轨迹和我们的估计轨迹
set(gca,'FontSize',12); set(gcf,'Color','White');
xlabel('time step'); ylabel('  position');
legend('True  position', 'Particle filter estimate');

这篇关于粒子滤波器/卡尔曼滤波局限/状态空间模型/蒙特卡罗方法/重要性采样/重要密度函数/重采样/粒子退化 的核心思想+ Matlab代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/344371

相关文章

Django开发时如何避免频繁发送短信验证码(python图文代码)

《Django开发时如何避免频繁发送短信验证码(python图文代码)》Django开发时,为防止频繁发送验证码,后端需用Redis限制请求频率,结合管道技术提升效率,通过生产者消费者模式解耦业务逻辑... 目录避免频繁发送 验证码1. www.chinasem.cn避免频繁发送 验证码逻辑分析2. 避免频繁

精选20个好玩又实用的的Python实战项目(有图文代码)

《精选20个好玩又实用的的Python实战项目(有图文代码)》文章介绍了20个实用Python项目,涵盖游戏开发、工具应用、图像处理、机器学习等,使用Tkinter、PIL、OpenCV、Kivy等库... 目录① 猜字游戏② 闹钟③ 骰子模拟器④ 二维码⑤ 语言检测⑥ 加密和解密⑦ URL缩短⑧ 音乐播放

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

MySQL常用字符串函数示例和场景介绍

《MySQL常用字符串函数示例和场景介绍》MySQL提供了丰富的字符串函数帮助我们高效地对字符串进行处理、转换和分析,本文我将全面且深入地介绍MySQL常用的字符串函数,并结合具体示例和场景,帮你熟练... 目录一、字符串函数概述1.1 字符串函数的作用1.2 字符串函数分类二、字符串长度与统计函数2.1

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

Linux系统中查询JDK安装目录的几种常用方法

《Linux系统中查询JDK安装目录的几种常用方法》:本文主要介绍Linux系统中查询JDK安装目录的几种常用方法,方法分别是通过update-alternatives、Java命令、环境变量及目... 目录方法 1:通过update-alternatives查询(推荐)方法 2:检查所有已安装的 JDK方

SQL Server安装时候没有中文选项的解决方法

《SQLServer安装时候没有中文选项的解决方法》用户安装SQLServer时界面全英文,无中文选项,通过修改安装设置中的国家或地区为中文中国,重启安装程序后界面恢复中文,解决了问题,对SQLSe... 你是不是在安装SQL Server时候发现安装界面和别人不同,并且无论如何都没有中文选项?这个问题也

Java Thread中join方法使用举例详解

《JavaThread中join方法使用举例详解》JavaThread中join()方法主要是让调用改方法的thread完成run方法里面的东西后,在执行join()方法后面的代码,这篇文章主要介绍... 目录前言1.join()方法的定义和作用2.join()方法的三个重载版本3.join()方法的工作原