Barra模型因子的构建及应用系列七之Liquidity因子

2023-11-04 06:20

本文主要是介绍Barra模型因子的构建及应用系列七之Liquidity因子,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、摘要

在前期的Barra模型系列文章中,我们构建了Size因子、Beta因子、Momentum因子、Residual Volatility因子、NonLinear Size因子和Book-to-Price因子,并分别创建了对应的单因子策略,其中Size因子和NonLinear Siz因子具有很强的收益能力。本节文章是该系列的第七篇,将在该系列下进一步构建Liquidity因子。

二、模型理论

Barra模型的Liquidity因子的计算方法如下:

Liquidity因子是一个复合因子,由三个子因子构成,分别是:月度换手率、季度换手率和年度换手率,三者的权重为0.35、0.35、0.3。换手率的计算方式是成交量和流通股本的比值,进行T天的加总后求对数。月度的交易天数为21天,季度的交易天数为63天,年度的交易天数为252天。

三、因子分析

使用alphalens进行对Liquidity因子进行分析(2022年-2023年3月5日)。

由上述收益分析来看,各个调仓周期下的alpha收益均为负数,5天的调仓周期下的beta收益为正且最大;Liquidity因子值的最大分组和最小分组均贡献负收益,且最大分组的负收益远大于最小分组。

进一步从信息系数来看,IC均值和IC标准差在各个调仓频率之下相差不大,但是平均IC仅为-0.03,小于0.05,选股能力堪忧。

从分组收益图来看,Liquidity因子呈现两端负收益,中间正收益的形态,这表明过高和过低的换手率都会导致平均收益的下滑。

从因子分析来看,该因子的收益能力较差,构建单因子策略的话,其回测收益理应也是较差的。但为了我们后期对Barra模型的10个因子做进一步的综合分析,在此还是进一步撰写代码,方便后期使用。

四、回测分析

回测时间:2022-01-01至2023-03-05(月底换股)

回测品种:全A股(剔除ST股、停牌股和一年以内的次新股)

初始资金:100万

手续费:0.0007(双边万二佣金+单边千一印花税,共千1.4,即双边万7)

滑点:0.00123(双边千1.23)

最大持仓数量:30只

策略净值曲线波动较小,对比沪深300指数,在下跌阶段(2022年7月-10月)抗跌能力强,而在随后的反弹阶段,亦具备较强的进攻能力。整体表现相对较好。

从历史回测数据来看,Liquidity因子的收益能够跑赢大盘指数,但未能创造正收益:年化收益率为-1.81%,最大回撤率为-18.71%,夏普比率-0.11,胜率也仅43.64%。

以上,本期的策略源码已分享至掘金量化社区,大家可以通过下方链接自行获取。

传送门:掘金量化社区-Barra模型因子的构建及应用系列七

本期参考文献:

1.The Barra China Equity Model (CNE5) - MSCI - MSCI

链接:https://www.docin.com/p-1377763566.html

2.石川  正确理解 Barra 的纯因子模型

链接:https://zhuanlan.zhihu.com/p/38280638

3.方正证券 Barra模型初探,A股市场风格解析

4.中银证券 有关Barra中国权益CNE5模型的思考

5.量化投资小笔记 Barra系列

链接:https://zhuanlan.zhihu.com/p/68110181

6.理解非线性市值因子NLSIZE/MIDCAP 

链接:https://zhuanlan.zhihu.com/p/150310851?from_voters_page=true

这篇关于Barra模型因子的构建及应用系列七之Liquidity因子的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/343859

相关文章

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do

深入浅出SpringBoot WebSocket构建实时应用全面指南

《深入浅出SpringBootWebSocket构建实时应用全面指南》WebSocket是一种在单个TCP连接上进行全双工通信的协议,这篇文章主要为大家详细介绍了SpringBoot如何集成WebS... 目录前言为什么需要 WebSocketWebSocket 是什么Spring Boot 如何简化 We

Java Stream流之GroupBy的用法及应用场景

《JavaStream流之GroupBy的用法及应用场景》本教程将详细介绍如何在Java中使用Stream流的groupby方法,包括基本用法和一些常见的实际应用场景,感兴趣的朋友一起看看吧... 目录Java Stream流之GroupBy的用法1. 前言2. 基础概念什么是 GroupBy?Stream

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

C#中的Converter的具体应用

《C#中的Converter的具体应用》C#中的Converter提供了一种灵活的类型转换机制,本文详细介绍了Converter的基本概念、使用场景,具有一定的参考价值,感兴趣的可以了解一下... 目录Converter的基本概念1. Converter委托2. 使用场景布尔型转换示例示例1:简单的字符串到

Spring Boot Actuator应用监控与管理的详细步骤

《SpringBootActuator应用监控与管理的详细步骤》SpringBootActuator是SpringBoot的监控工具,提供健康检查、性能指标、日志管理等核心功能,支持自定义和扩展端... 目录一、 Spring Boot Actuator 概述二、 集成 Spring Boot Actuat

PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例

《PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例》词嵌入解决NLP维度灾难,捕捉语义关系,PyTorch的nn.Embedding模块提供灵活实现,支持参数配置、预训练及变长... 目录一、词嵌入(Word Embedding)简介为什么需要词嵌入?二、PyTorch中的nn.Em

Spring Boot3.0新特性全面解析与应用实战

《SpringBoot3.0新特性全面解析与应用实战》SpringBoot3.0作为Spring生态系统的一个重要里程碑,带来了众多令人兴奋的新特性和改进,本文将深入解析SpringBoot3.0的... 目录核心变化概览Java版本要求提升迁移至Jakarta EE重要新特性详解1. Native Ima