栩栩如生,音色克隆,Bert-vits2文字转语音打造鬼畜视频实践(Python3.10)

本文主要是介绍栩栩如生,音色克隆,Bert-vits2文字转语音打造鬼畜视频实践(Python3.10),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

诸公可知目前最牛逼的TTS免费开源项目是哪一个?没错,是Bert-vits2,没有之一。它是在本来已经极其强大的Vits项目中融入了Bert大模型,基本上解决了VITS的语气韵律问题,在效果非常出色的情况下训练的成本开销普通人也完全可以接受。

BERT的核心思想是通过在大规模文本语料上进行无监督预训练,学习到通用的语言表示,然后将这些表示用于下游任务的微调。相比传统的基于词嵌入的模型,BERT引入了双向上下文信息的建模,使得模型能够更好地理解句子中的语义和关系。

BERT的模型结构基于Transformer,它由多个编码器层组成。每个编码器层都有多头自注意力机制和前馈神经网络,用于对输入序列进行多层次的特征提取和表示学习。在预训练阶段,BERT使用了两种任务来学习语言表示:掩码语言模型(Masked Language Model,MLM)和下一句预测(Next Sentence Prediction,NSP)。通过这两种任务,BERT能够学习到上下文感知的词嵌入和句子级别的语义表示。

在实际应用中,BERT的预训练模型可以用于各种下游任务,如文本分类、命名实体识别、问答系统等。通过微调预训练模型,可以在特定任务上取得更好的性能,而无需从头开始训练模型。

BERT的出现对自然语言处理领域带来了重大影响,成为了许多最新研究和应用的基础。它在多个任务上取得了领先的性能,并促进了自然语言理解的发展。

本次让我们基于Bert-vits2项目来克隆渣渣辉和刘青云的声音,打造一款时下热搜榜一的“青岛啤酒”鬼畜视频。

语音素材和模型

首先我们需要渣渣辉和刘青云的原版音频素材,原版《扫毒》素材可以参考:https://www.bilibili.com/video/BV1R64y1F7SQ/。

将两个主角的声音单独提取出来,随后依次进行背景音和前景音的分离,声音降噪以及声音切片等操作,这些步骤之前已经做过详细介绍,请参见:民谣女神唱流行,基于AI人工智能so-vits库训练自己的音色模型(叶蓓/Python3.10)。 囿于篇幅,这里不再赘述。

做好素材的简单处理后,我们来克隆项目:

git clone https://github.com/Stardust-minus/Bert-VITS2

随后安装项目的依赖:

cd Bert-VITS2  pip3 install -r requirements.txt

接着下载bert模型放入到项目的bert目录。

bert模型下载地址:

中:https://huggingface.co/hfl/chinese-roberta-wwm-ext-large  
日:https://huggingface.co/cl-tohoku/bert-base-japanese-v3/tree/main

语音标注

接着我们需要对已经切好分片的语音进行标注,这里我们使用开源库whisper,关于whisper请移步:闻其声而知雅意,M1 Mac基于PyTorch(mps/cpu/cuda)的人工智能AI本地语音识别库Whisper(Python3.10)。

编写标注代码:

import whisper  
import os  
import json  
import torchaudio  
import argparse  
import torch  lang2token = {  'zh': "ZH|",  'ja': "JP|",  "en": "EN|",  }  
def transcribe_one(audio_path):  # load audio and pad/trim it to fit 30 seconds  audio = whisper.load_audio(audio_path)  audio = whisper.pad_or_trim(audio)  # make log-Mel spectrogram and move to the same device as the model  mel = whisper.log_mel_spectrogram(audio).to(model.device)  # detect the spoken language  _, probs = model.detect_language(mel)  print(f"Detected language: {max(probs, key=probs.get)}")  lang = max(probs, key=probs.get)  # decode the audio  options = whisper.DecodingOptions(beam_size=5)  result = whisper.decode(model, mel, options)  # print the recognized text  print(result.text)  return lang, result.text  
if __name__ == "__main__":  parser = argparse.ArgumentParser()  parser.add_argument("--languages", default="CJ")  parser.add_argument("--whisper_size", default="medium")  args = parser.parse_args()  if args.languages == "CJE":  lang2token = {  'zh': "ZH|",  'ja': "JP|",  "en": "EN|",  }  elif args.languages == "CJ":  lang2token = {  'zh': "ZH|",  'ja': "JP|",  }  elif args.languages == "C":  lang2token = {  'zh': "ZH|",  }  assert (torch.cuda.is_available()), "Please enable GPU in order to run Whisper!"  model = whisper.load_model(args.whisper_size)  parent_dir = "./custom_character_voice/"  speaker_names = list(os.walk(parent_dir))[0][1]  speaker_annos = []  total_files = sum([len(files) for r, d, files in os.walk(parent_dir)])  # resample audios  # 2023/4/21: Get the target sampling rate  with open("./configs/config.json", 'r', encoding='utf-8') as f:  hps = json.load(f)  target_sr = hps['data']['sampling_rate']  processed_files = 0  for speaker in speaker_names:  for i, wavfile in enumerate(list(os.walk(parent_dir + speaker))[0][2]):  # try to load file as audio  if wavfile.startswith("processed_"):  continue  try:  wav, sr = torchaudio.load(parent_dir + speaker + "/" + wavfile, frame_offset=0, num_frames=-1, normalize=True,  channels_first=True)  wav = wav.mean(dim=0).unsqueeze(0)  if sr != target_sr:  wav = torchaudio.transforms.Resample(orig_freq=sr, new_freq=target_sr)(wav)  if wav.shape[1] / sr > 20:  print(f"{wavfile} too long, ignoring\n")  save_path = parent_dir + speaker + "/" + f"processed_{i}.wav"  torchaudio.save(save_path, wav, target_sr, channels_first=True)  # transcribe text  lang, text = transcribe_one(save_path)  if lang not in list(lang2token.keys()):  print(f"{lang} not supported, ignoring\n")  continue  #text = "ZH|" + text + "\n"  text = lang2token[lang] + text + "\n"  speaker_annos.append(save_path + "|" + speaker + "|" + text)  processed_files += 1  print(f"Processed: {processed_files}/{total_files}")  except:  continue

标注后,会生成切片语音对应文件:

./genshin_dataset/ying/vo_dialog_DPEQ003_raidenEi_01.wav|ying|ZH|神子…臣民对我的畏惧…  
./genshin_dataset/ying/vo_dialog_DPEQ003_raidenEi_02.wav|ying|ZH|我不会那么做…  
./genshin_dataset/ying/vo_dialog_SGLQ002_raidenEi_01.wav|ying|ZH|不用着急,好好挑选吧,我就在这里等着。  
./genshin_dataset/ying/vo_dialog_SGLQ003_raidenEi_01.wav|ying|ZH|现在在做的事就是「留影」…  
./genshin_dataset/ying/vo_dialog_SGLQ003_raidenEi_02.wav|ying|ZH|嗯,不错,又学到新东西了。快开始吧。

说白了,就是通过whisper把人物说的话先转成文字,并且生成对应的音标:

./genshin_dataset/ying/vo_dialog_DPEQ003_raidenEi_01.wav|ying|ZH|神子…臣民对我的畏惧…|_ sh en z i0 … ch en m in d ui w o d e w ei j v … _|0 2 2 5 5 0 2 2 2 2 4 4 3 3 5 5 4 4 4 4 0 0|1 2 2 1 2 2 2 2 2 2 2 1 1  
./genshin_dataset/ying/vo_dialog_DPEQ003_raidenEi_02.wav|ying|ZH|我不会那么做…|_ w o b u h ui n a m e z uo … _|0 3 3 2 2 4 4 4 4 5 5 4 4 0 0|1 2 2 2 2 2 2 1 1  
./genshin_dataset/ying/vo_dialog_SGLQ002_raidenEi_01.wav|ying|ZH|不用着急,好好挑选吧,我就在这里等着.|_ b u y ong zh ao j i , h ao h ao t iao x van b a , w o j iu z ai zh e l i d eng zh e . _|0 2 2 4 4 2 2 2 2 0 2 2 3 3 1 1 3 3 5 5 0 3 3 4 4 4 4 4 4 3 3 3 3 5 5 0 0|1 2 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 1  
./genshin_dataset/ying/vo_dialog_SGLQ003_raidenEi_01.wav|ying|ZH|现在在做的事就是'留影'…|_ x ian z ai z ai z uo d e sh ir j iu sh ir ' l iu y ing ' … _|0 4 4 4 4 4 4 4 4 5 5 4 4 4 4 4 4 0 2 2 3 3 0 0 0|1 2 2 2 2 2 2 2 2 1 2 2 1 1 1  
./genshin_dataset/ying/vo_dialog_SGLQ003_raidenEi_02.wav|ying|ZH|恩,不错,又学到新东西了.快开始吧.|_ EE en , b u c uo , y ou x ve d ao x in d ong x i l e . k uai k ai sh ir b a

最后,将标注好的文件转换为bert模型可读文件:

import torch  
from multiprocessing import Pool  
import commons  
import utils  
from tqdm import tqdm  
from text import cleaned_text_to_sequence, get_bert  
import argparse  
import torch.multiprocessing as mp  def process_line(line):  rank = mp.current_process()._identity  rank = rank[0] if len(rank) > 0 else 0  if torch.cuda.is_available():  gpu_id = rank % torch.cuda.device_count()  device = torch.device(f"cuda:{gpu_id}")  wav_path, _, language_str, text, phones, tone, word2ph = line.strip().split("|")  phone = phones.split(" ")  tone = [int(i) for i in tone.split(" ")]  word2ph = [int(i) for i in word2ph.split(" ")]  word2ph = [i for i in word2ph]  phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)  phone = commons.intersperse(phone, 0)  tone = commons.intersperse(tone, 0)  language = commons.intersperse(language, 0)  for i in range(len(word2ph)):  word2ph[i] = word2ph[i] * 2  word2ph[0] += 1  bert_path = wav_path.replace(".wav", ".bert.pt")  try:  bert = torch.load(bert_path)  assert bert.shape[-1] == len(phone)  except Exception:  bert = get_bert(text, word2ph, language_str, device)  assert bert.shape[-1] == len(phone)  torch.save(bert, bert_path)

模型训练

此时,打开项目目录中的config.json文件:

{  "train": {  "log_interval": 100,  "eval_interval": 100,  "seed": 52,  "epochs": 200,  "learning_rate": 0.0001,  "betas": [  0.8,  0.99  ],  "eps": 1e-09,  "batch_size": 4,  "fp16_run": false,  "lr_decay": 0.999875,  "segment_size": 16384,  "init_lr_ratio": 1,  "warmup_epochs": 0,  "c_mel": 45,  "c_kl": 1.0,  "skip_optimizer": true  },  "data": {  "training_files": "filelists/train.list",  "validation_files": "filelists/val.list",  "max_wav_value": 32768.0,  "sampling_rate": 44100,  "filter_length": 2048,  "hop_length": 512,  "win_length": 2048,  "n_mel_channels": 128,  "mel_fmin": 0.0,  "mel_fmax": null,  "add_blank": true,  "n_speakers": 1,  "cleaned_text": true,  "spk2id": {  "ying": 0  }  },  "model": {  "use_spk_conditioned_encoder": true,  "use_noise_scaled_mas": true,  "use_mel_posterior_encoder": false,  "use_duration_discriminator": true,  "inter_channels": 192,  "hidden_channels": 192,  "filter_channels": 768,  "n_heads": 2,  "n_layers": 6,  "kernel_size": 3,  "p_dropout": 0.1,  "resblock": "1",  "resblock_kernel_sizes": [  3,  7,  11  ],  "resblock_dilation_sizes": [  [  1,  3,  5  ],  [  1,  3,  5  ],  [  1,  3,  5  ]  ],  "upsample_rates": [  8,  8,  2,  2,  2  ],  "upsample_initial_channel": 512,  "upsample_kernel_sizes": [  16,  16,  8,  2,  2  ],  "n_layers_q": 3,  "use_spectral_norm": false,  "gin_channels": 256  }  
}

这里需要修改的参数是batch_size,通常情况下,数值和本地显存应该是一致的,但是最好还是改小一点,比如说一块4060的8G卡,最好batch_size是4,如果写8的话,还是有几率爆显存。

随后开始训练:

python3 train_ms.py

程序返回:

[W C:\actions-runner\_work\pytorch\pytorch\builder\windows\pytorch\torch\csrc\distributed\c10d\socket.cpp:601] [c10d] The client socket has failed to connect to [v3u.net]:65280 (system error: 10049 - 在其上下文中,该请求的地址无效。).  
[W C:\actions-runner\_work\pytorch\pytorch\builder\windows\pytorch\torch\csrc\distributed\c10d\socket.cpp:601] [c10d] The client socket has failed to connect to [v3u.net]:65280 (system error: 10049 - 在其上下文中,该请求的地址无效。).  
2023-10-23 15:36:08.293 | INFO     | data_utils:_filter:61 - Init dataset...  
100%|█████████████████████████████████████████████████████████████████████████████| 562/562 [00:00<00:00, 14706.57it/s]  
2023-10-23 15:36:08.332 | INFO     | data_utils:_filter:76 - skipped: 0, total: 562  
2023-10-23 15:36:08.333 | INFO     | data_utils:_filter:61 - Init dataset...  
100%|████████████████████████████████████████████████████████████████████████████████████████████| 4/4 [00:00<?, ?it/s]  
2023-10-23 15:36:08.334 | INFO     | data_utils:_filter:76 - skipped: 0, total: 4  
Using noise scaled MAS for VITS2  
Using duration discriminator for VITS2  
INFO:OUTPUT_MODEL:Loaded checkpoint './logs\OUTPUT_MODEL\DUR_4600.pth' (iteration 33)  
INFO:OUTPUT_MODEL:Loaded checkpoint './logs\OUTPUT_MODEL\G_4600.pth' (iteration 33)  
INFO:OUTPUT_MODEL:Loaded checkpoint './logs\OUTPUT_MODEL\D_4600.pth' (iteration 33)

说明没有问题,训练日志存放在项目的logs目录下。

随后可以通过tensorboard来监控训练过程:

python3 -m tensorboard.main --logdir=logs\OUTPUT_MODEL

当loss趋于稳定说明模型已经收敛:

模型推理

最后,我们就可以使用模型来生成我们想要听到的语音了:

python3 webui.py -m ./logs\OUTPUT_MODEL\G_47700.pth

注意参数为训练好的迭代模型,如果觉得当前迭代的模型可用,那么直接把pth和config.json拷贝出来即可,随后可以接着训练下一个模型。

结语

基于Bert-vits2打造的渣渣辉和刘青云音色的鬼畜视频已经上线到Youtube(B站),请检索:刘悦的技术博客,欢迎诸君品鉴和臻赏。

这篇关于栩栩如生,音色克隆,Bert-vits2文字转语音打造鬼畜视频实践(Python3.10)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/342824

相关文章

基于Python打造一个智能单词管理神器

《基于Python打造一个智能单词管理神器》这篇文章主要为大家详细介绍了如何使用Python打造一个智能单词管理神器,从查询到导出的一站式解决,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 项目概述:为什么需要这个工具2. 环境搭建与快速入门2.1 环境要求2.2 首次运行配置3. 核心功能使用指

利用Python打造一个Excel记账模板

《利用Python打造一个Excel记账模板》这篇文章主要为大家详细介绍了如何使用Python打造一个超实用的Excel记账模板,可以帮助大家高效管理财务,迈向财富自由之路,感兴趣的小伙伴快跟随小编一... 目录设置预算百分比超支标红预警记账模板功能介绍基础记账预算管理可视化分析摸鱼时间理财法碎片时间利用财

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

Spring Boot 整合 SSE的高级实践(Server-Sent Events)

《SpringBoot整合SSE的高级实践(Server-SentEvents)》SSE(Server-SentEvents)是一种基于HTTP协议的单向通信机制,允许服务器向浏览器持续发送实... 目录1、简述2、Spring Boot 中的SSE实现2.1 添加依赖2.2 实现后端接口2.3 配置超时时

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

Python结合PyWebView库打造跨平台桌面应用

《Python结合PyWebView库打造跨平台桌面应用》随着Web技术的发展,将HTML/CSS/JavaScript与Python结合构建桌面应用成为可能,本文将系统讲解如何使用PyWebView... 目录一、技术原理与优势分析1.1 架构原理1.2 核心优势二、开发环境搭建2.1 安装依赖2.2 验

Java Optional的使用技巧与最佳实践

《JavaOptional的使用技巧与最佳实践》在Java中,Optional是用于优雅处理null的容器类,其核心目标是显式提醒开发者处理空值场景,避免NullPointerExce... 目录一、Optional 的核心用途二、使用技巧与最佳实践三、常见误区与反模式四、替代方案与扩展五、总结在 Java

Spring Boot循环依赖原理、解决方案与最佳实践(全解析)

《SpringBoot循环依赖原理、解决方案与最佳实践(全解析)》循环依赖指两个或多个Bean相互直接或间接引用,形成闭环依赖关系,:本文主要介绍SpringBoot循环依赖原理、解决方案与最... 目录一、循环依赖的本质与危害1.1 什么是循环依赖?1.2 核心危害二、Spring的三级缓存机制2.1 三

基于Python打造一个全能文本处理工具

《基于Python打造一个全能文本处理工具》:本文主要介绍一个基于Python+Tkinter开发的全功能本地化文本处理工具,它不仅具备基础的格式转换功能,更集成了中文特色处理等实用功能,有需要的... 目录1. 概述:当文本处理遇上python图形界面2. 功能全景图:六大核心模块解析3.运行效果4. 相

Python 中的 with open文件操作的最佳实践

《Python中的withopen文件操作的最佳实践》在Python中,withopen()提供了一个简洁而安全的方式来处理文件操作,它不仅能确保文件在操作完成后自动关闭,还能处理文件操作中的异... 目录什么是 with open()?为什么使用 with open()?使用 with open() 进行