单目标优化:蜣螂优化算法(Dung beetle optimizer,DBO)求解CEC2017(2017 IEEE Conference on Evolutionary Computation)

本文主要是介绍单目标优化:蜣螂优化算法(Dung beetle optimizer,DBO)求解CEC2017(2017 IEEE Conference on Evolutionary Computation),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

蜣螂优化算法(Dung beetle optimizer,DBO)由Jiankai Xue和Bo Shen于2022年提出,该算法主要受蜣螂的滚球、跳舞、觅食、偷窃和繁殖行为的启发所得。
在这里插入图片描述

一、蜣螂优化算法

1.1蜣螂滚球

(1)当蜣螂前行无障碍时,蜣螂在滚粪球过程中会利用太阳进行导航,下图中红色箭头表示滚动方向
在这里插入图片描述
本文假设光源的强度会影响蜣螂的位置,蜣螂在滚粪球过程中位置更新如下:

x i ( t + 1 ) = x i ( t ) + α × k × x i ( t − 1 ) + b × Δ x , Δ x = ∣ x i ( t ) − X w ∣ \begin{aligned} x_{i}(t+1) &=x_{i}(t)+\alpha \times k \times x_{i}(t-1)+b \times \Delta x, \\ \Delta x &=\left|x_{i}(t)-X^{w}\right| \end{aligned} xi(t+1)Δx=xi(t)+α×k×xi(t1)+b×Δx,=xi(t)Xw
其中, t t t表示当前迭代次数, x i ( t ) x_{i}(t) xi(t)表示第 i i i次蜣螂在第t次迭代中的位置信息, k ∈ ( 0 , 0.2 ] k∈(0,0.2] k(0,0.2]为扰动系数, b b b ( 0 , 1 ) (0,1) (0,1) 之间的随机数, α \alpha α取 -1 或 1 , X w X^{w} Xw表示全局最差位置, Δ x \Delta x Δx用于模拟光的强度变化。
其中, α \alpha α的取值采用算法1:
在这里插入图片描述

(2)当蜣螂遇到障碍物无法前进时,它需要通过跳舞来重新调整自己,以获得新的路线。本文使用切线函数来模仿跳舞行为,以此获得新的滚动方向,滚动方向仅考虑为 [ 0 , π ] [0,π] [0,π]之间。
在这里插入图片描述
蜣螂一旦成功确定新的方向,它应该继续向后滚动球。蜣螂的位置更新如下:
x i ( t + 1 ) = x i ( t ) + tan ⁡ ( θ ) ∣ x i ( t ) − x i ( t − 1 ) ∣ x_{i}(t+1)=x_{i}(t)+\tan (\theta)\left|x_{i}(t)-x_{i}(t-1)\right| xi(t+1)=xi(t)+tan(θ)xi(t)xi(t1)
其中, θ \theta θ为偏转角,其取值为 [ 0 , π ] [0,π] [0,π],采用算法2:
在这里插入图片描述

1.2蜣螂繁殖

在这里插入图片描述

在自然界中,雌性蜣螂将粪球被滚到适合产卵的安全地方并将其隐藏起来,以此为后代提供一个安全的环境。受此启发,因而提出了一种边界选择策略以此模拟雌性蜣螂产卵的区域:
L b ∗ = max ⁡ ( X ∗ × ( 1 − R ) , L b ) U b ∗ = min ⁡ ( X ∗ × ( 1 + R ) , U b ) \begin{array}{l} L b^{*}=\max \left(X^{*} \times(1-R), L b\right) \\ U b^{*}=\min \left(X^{*} \times(1+R), U b\right) \end{array} Lb=max(X×(1R),Lb)Ub=min(X×(1+R),Ub)
其中, X ∗ X^{*} X表示当前最优位置, L b ∗ L b^{*} Lb U b ∗ U b^{*} Ub分别表示产卵区的下限和上限, R = 1 − t / T m a x R=1−t/T_{max} R=1t/Tmax T m a x T_{max} Tmax表示最大迭代次数, L b Lb Lb U b Ub Ub分别表示优化问题的下限和上限。
雌性蜣螂一旦确定了产卵区,就会选择在该区域育雏球产卵。每只雌性蜣螂在每次迭代中只产生一个卵,可以看出,产卵区的边界范围是动态变化的,主要由R值决定。因此,育雏球的位置在迭代过程中也是动态的,其定义如下:
B i ( t + 1 ) = X ∗ + b 1 × ( B i ( t ) − L b ∗ ) + b 2 × ( B i ( t ) − U b ∗ ) B_{i}(t+1)=X^{*}+b_{1} \times\left(B_{i}(t)-L b^{*}\right)+b_{2} \times\left(B_{i}(t)-U b^{*}\right) Bi(t+1)=X+b1×(Bi(t)Lb)+b2×(Bi(t)Ub)
其中, B i ( t ) B_{i}(t) Bi(t)表示第t次迭代中第 i个育雏球的位置信息, b 1 b_{1} b1 b 2 b_{2} b2均为1×D的随机向量,D表示优化问题的维度。
产卵区的选择如算法3所示:
在这里插入图片描述

1.3蜣螂觅食

在这里插入图片描述
雌性蜣螂所产的卵会逐渐长大,一些已经成熟的小蜣螂会从地下出来寻找食物,小蜣螂的最佳觅食区建模如下:
L b b = max ⁡ ( X b × ( 1 − R ) , L b ) U b b = min ⁡ ( X b × ( 1 + R ) , U b ) \begin{array}{l} L b^{b}=\max \left(X^{b} \times(1-R), L b\right) \\ U b^{b}=\min \left(X^{b} \times(1+R), U b\right) \end{array} Lbb=max(Xb×(1R),Lb)Ubb=min(Xb×(1+R),Ub)
其中, X b X^{b} Xb表示全局最优位置, L b b L b^{b} Lbb U b b U b^{b} Ubb分别表示最佳觅食区的下限和上限。
在这里插入图片描述

小蜣螂的位置更新如下:
x i ( t + 1 ) = x i ( t ) + C 1 × ( x i ( t ) − L b b ) + C 2 × ( x i ( t ) − U b b ) x_{i}(t+1)=x_{i}(t)+C_{1} \times\left(x_{i}(t)-L b^{b}\right)+C_{2} \times\left(x_{i}(t)-U b^{b}\right) xi(t+1)=xi(t)+C1×(xi(t)Lbb)+C2×(xi(t)Ubb)
其中, x i ( t ) x_{i}(t) xi(t)表示第t次迭代中第i只小蜣螂在的位置, C 1 C_{1} C1是服从正态分布的随机数, C 2 C_{2} C2为(0,1)的随机向量。

1.4蜣螂偷窃

在这里插入图片描述

另一方面,一些蜣螂从其他蜣螂那里偷粪球,盗贼蜣螂的位置更新如下:

x i ( t + 1 ) = X b + S × g × ( ∣ x i ( t ) − X ∗ ∣ + ∣ x i ( t ) − X b ∣ ) x_{i}(t+1)=X^{b}+S \times g \times\left(\left|x_{i}(t)-X^{*}\right|+\left|x_{i}(t)-X^{b}\right|\right) xi(t+1)=Xb+S×g×(xi(t)X+xi(t)Xb)
其中, x i ( t ) x_{i}(t) xi(t)表示在第t次迭代中第i个盗贼蜣螂的位置,g为服从正态分布的1×D随机向量,S为常数。

1.5算法描述

滚球蜣螂、繁殖蜣螂、觅食蜣螂和偷窃蜣螂的比例分布如下:
在这里插入图片描述
DBO算法描述如下:
在这里插入图片描述
参考文献:Xue, J., Shen, B. Dung beetle optimizer: a new meta-heuristic algorithm for global optimization. J Supercomput (2022). https://doi.org/10.1007/s11227-022-04959-6

二、CEC2017简介

CEC2017((2017 IEEE Conference on Evolutionary Computation))共有30个无约束测试函数分别是:单峰函数(F1-F3)、简单多峰函数(F4-F10)、混合函数(F11-F20)和组合函数(F21~F30)。测试维度包含:10D、30D、50D、100D。CEC2017无约束测试问题随着维度的增加求解极其困难。

在这里插入图片描述

三、求解结果

将蜣螂优化算法DBO运用于求解CEC2017中30个无约束函数,其中每个测试函数可以选择的维度分别有:10D、30D、50D、100D。增大迭代次数,SSA的求解效果更佳。本例测试函数维度均为为10D(可根据自己需求调整),最大迭代次数为100次。

close all
clear 
clc代码链接:https://pan.baidu.com/s/11I6eMyMU3k-UHfUu1O_mIA 
提取码:1234Function_name=1; %测试函数1-30
lb=-100;%变量下界
ub=100;%变量上界
dim=10;%维度 10/30/50/100
SearchAgents_no=100; % Number of search agents
Max_iteration=100;%最大迭代次数
ObjectiveFunction=str2func('cec17_func');
[Best_score,Best_pos,Curve]=DBO(SearchAgents_no,Max_iteration,lb,ub,dim,fobj);
figure
% Best convergence curve
semilogy(Curve,'Color','r')
title(strcat('CEC2017-F',num2str(Function_name)))
xlabel('迭代次数');
ylabel('适应度值');
axis tight
box on
legend('DBO')
display(['The best solution is : ', num2str(Best_pos)]);
display(['The best optimal value of the objective funciton is : ', num2str(Best_score)]);

3.1 F1:

在这里插入图片描述

3.2 F2:

在这里插入图片描述

3.3 F3:

在这里插入图片描述

3.4 F4:

在这里插入图片描述

3.5F5:

在这里插入图片描述

3.6F6:

在这里插入图片描述

3.7F7:

在这里插入图片描述

3.8F8:

在这里插入图片描述

四、参考代码

源文件夹包含DBO求解CEC2017的所有代码,测试函数共30个。每个函数可选择维度分别为:10、30、50与100。直接点击Main.m文件直接运行,支持二次开发。
在这里插入图片描述

这篇关于单目标优化:蜣螂优化算法(Dung beetle optimizer,DBO)求解CEC2017(2017 IEEE Conference on Evolutionary Computation)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:https://blog.csdn.net/weixin_46204734/article/details/128142434
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/342001

相关文章

SpringBoot中HTTP连接池的配置与优化

《SpringBoot中HTTP连接池的配置与优化》这篇文章主要为大家详细介绍了SpringBoot中HTTP连接池的配置与优化的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录一、HTTP连接池的核心价值二、Spring Boot集成方案方案1:Apache HttpCl

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

PyTorch高级特性与性能优化方式

《PyTorch高级特性与性能优化方式》:本文主要介绍PyTorch高级特性与性能优化方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、自动化机制1.自动微分机制2.动态计算图二、性能优化1.内存管理2.GPU加速3.多GPU训练三、分布式训练1.分布式数据

MySQL中like模糊查询的优化方案

《MySQL中like模糊查询的优化方案》在MySQL中,like模糊查询是一种常用的查询方式,但在某些情况下可能会导致性能问题,本文将介绍八种优化MySQL中like模糊查询的方法,需要的朋友可以参... 目录1. 避免以通配符开头的查询2. 使用全文索引(Full-text Index)3. 使用前缀索

C#实现高性能Excel百万数据导出优化实战指南

《C#实现高性能Excel百万数据导出优化实战指南》在日常工作中,Excel数据导出是一个常见的需求,然而,当数据量较大时,性能和内存问题往往会成为限制导出效率的瓶颈,下面我们看看C#如何结合EPPl... 目录一、技术方案核心对比二、各方案选型建议三、性能对比数据四、核心代码实现1. MiniExcel

Springboot实现推荐系统的协同过滤算法

《Springboot实现推荐系统的协同过滤算法》协同过滤算法是一种在推荐系统中广泛使用的算法,用于预测用户对物品(如商品、电影、音乐等)的偏好,从而实现个性化推荐,下面给大家介绍Springboot... 目录前言基本原理 算法分类 计算方法应用场景 代码实现 前言协同过滤算法(Collaborativ

MySQL索引的优化之LIKE模糊查询功能实现

《MySQL索引的优化之LIKE模糊查询功能实现》:本文主要介绍MySQL索引的优化之LIKE模糊查询功能实现,本文通过示例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录一、前缀匹配优化二、后缀匹配优化三、中间匹配优化四、覆盖索引优化五、减少查询范围六、避免通配符开头七、使用外部搜索引擎八、分

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

Python通过模块化开发优化代码的技巧分享

《Python通过模块化开发优化代码的技巧分享》模块化开发就是把代码拆成一个个“零件”,该封装封装,该拆分拆分,下面小编就来和大家简单聊聊python如何用模块化开发进行代码优化吧... 目录什么是模块化开发如何拆分代码改进版:拆分成模块让模块更强大:使用 __init__.py你一定会遇到的问题模www.

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n