【单目标优化算法】蜣螂优化算法(Dung beetle optimizer,DBO)(Matlab代码实现)

本文主要是介绍【单目标优化算法】蜣螂优化算法(Dung beetle optimizer,DBO)(Matlab代码实现),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 文献来源

🌈4 Matlab代码实现

💥1 概述

本文提出了一种新的基于种群的技术,称为粪甲虫优化器(DBO)算法,其灵感来自于粪甲虫的滚球、跳舞、觅食、偷窃和繁殖行为。新提出的DBO算法同时考虑了全局探索和局部开发,从而具有快速收敛速度和令人满意的解精度的特点。使用一系列众所周知的数学测试函数(包括23个基准函数和29个CEC-BC-2017测试函数)来评估DBO算法的搜索能力。从仿真结果中可以观察到,DBO算法在收敛速度、解的精度和稳定性方面与最先进的优化方法相比具有实质上的竞争性能。

详细文章讲解见第四部分。

📚2 运行结果

 部分代码:

function [fMin , bestX, Convergence_curve ] = DBO(pop, M,c,d,dim,fobj  )
        
   P_percent = 0.2;    % The population size of producers accounts for "P_percent" percent of the total population size       


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
pNum = round( pop *  P_percent );    % The population size of the producers   


lb= c.*ones( 1,dim );    % Lower limit/bounds/     a vector
ub= d.*ones( 1,dim );    % Upper limit/bounds/     a vector
%Initialization
for i = 1 : pop
    
    x( i, : ) = lb + (ub - lb) .* rand( 1, dim );  
    fit( i ) = fobj( x( i, : ) ) ;                       
end

pFit = fit;                       
pX = x; 
 XX=pX;    
[ fMin, bestI ] = min( fit );      % fMin denotes the global optimum fitness value
bestX = x( bestI, : );             % bestX denotes the global optimum position corresponding to fMin

 % Start updating the solutions.
for t = 1 : M    
       
        [fmax,B]=max(fit);
        worse= x(B,:);   
       r2=rand(1);
 
  
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    for i = 1 : pNum    
        if(r2<0.9)
            r1=rand(1);
          a=rand(1,1);
          if (a>0.1)
           a=1;
          else
           a=-1;
          end
    x( i , : ) =  pX(  i , :)+0.3*abs(pX(i , : )-worse)+a*0.1*(XX( i , :)); % Equation (1)
       else
            
           aaa= randperm(180,1);
           if ( aaa==0 ||aaa==90 ||aaa==180 )
            x(  i , : ) = pX(  i , :);   
           end
         theta= aaa*pi/180;   
       
       x(  i , : ) = pX(  i , :)+tan(theta).*abs(pX(i , : )-XX( i , :));    % Equation (2)      

        end
      
        x(  i , : ) = Bounds( x(i , : ), lb, ub );    
        fit(  i  ) = fobj( x(i , : ) );
    end 
 [ fMMin, bestII ] = min( fit );      % fMin denotes the current optimum fitness value
  bestXX = x( bestII, : );             % bestXX denotes the current optimum position 

 R=1-t/M;                           %
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 Xnew1 = bestXX.*(1-R); 
     Xnew2 =bestXX.*(1+R);                    %%% Equation (3)
   Xnew1= Bounds( Xnew1, lb, ub );
   Xnew2 = Bounds( Xnew2, lb, ub );
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
     Xnew11 = bestX.*(1-R); 
     Xnew22 =bestX.*(1+R);                     %%% Equation (5)
   Xnew11= Bounds( Xnew11, lb, ub );
    Xnew22 = Bounds( Xnew22, lb, ub );
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
    for i = ( pNum + 1 ) :12                  % Equation (4)
     x( i, : )=bestXX+((rand(1,dim)).*(pX( i , : )-Xnew1)+(rand(1,dim)).*(pX( i , : )-Xnew2));
   x(i, : ) = Bounds( x(i, : ), Xnew1, Xnew2 );
  fit(i ) = fobj(  x(i,:) ) ;
   end
   
  for i = 13: 19                  % Equation (6)

   
        x( i, : )=pX( i , : )+((randn(1)).*(pX( i , : )-Xnew11)+((rand(1,dim)).*(pX( i , : )-Xnew22)));
       x(i, : ) = Bounds( x(i, : ),lb, ub);
       fit(i ) = fobj(  x(i,:) ) ;
  
  end
  
  for j = 20 : pop                 % Equation (7)
       x( j,: )=bestX+randn(1,dim).*((abs(( pX(j,:  )-bestXX)))+(abs(( pX(j,:  )-bestX))))./2;
      x(j, : ) = Bounds( x(j, : ), lb, ub );
      fit(j ) = fobj(  x(j,:) ) ;
  end
   % Update the individual's best fitness vlaue and the global best fitness value
     XX=pX;
    for i = 1 : pop 
        if ( fit( i ) < pFit( i ) )
            pFit( i ) = fit( i );
            pX( i, : ) = x( i, : );
        end
        
        if( pFit( i ) < fMin )
           % fMin= pFit( i );
           fMin= pFit( i );
            bestX = pX( i, : );
          %  a(i)=fMin;
            
        end
    end
  
     Convergence_curve(t)=fMin;
  
    
  
end

% Application of simple limits/bounds
function s = Bounds( s, Lb, Ub)
  % Apply the lower bound vector
  temp = s;
  I = temp < Lb;
  temp(I) = Lb(I);
  
  % Apply the upper bound vector 
  J = temp > Ub;
  temp(J) = Ub(J);
  % Update this new move 
  s = temp;
function S = Boundss( SS, LLb, UUb)
  % Apply the lower bound vector
  temp = SS;
  I = temp < LLb;
  temp(I) = LLb(I);
  
  % Apply the upper bound vector 
  J = temp > UUb;
  temp(J) = UUb(J);
  % Update this new move 
  S = temp;
%---------------------------------------------------------------------------------------------------------------------------
 

🎉3 文献来源

部分理论来源于网络,如有侵权请联系删除。

🌈4 Matlab代码实现

这篇关于【单目标优化算法】蜣螂优化算法(Dung beetle optimizer,DBO)(Matlab代码实现)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/342000

相关文章

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

Linux挂载linux/Windows共享目录实现方式

《Linux挂载linux/Windows共享目录实现方式》:本文主要介绍Linux挂载linux/Windows共享目录实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录文件共享协议linux环境作为服务端(NFS)在服务器端安装 NFS创建要共享的目录修改 NFS 配

通过React实现页面的无限滚动效果

《通过React实现页面的无限滚动效果》今天我们来聊聊无限滚动这个现代Web开发中不可或缺的技术,无论你是刷微博、逛知乎还是看脚本,无限滚动都已经渗透到我们日常的浏览体验中,那么,如何优雅地实现它呢?... 目录1. 早期的解决方案2. 交叉观察者:IntersectionObserver2.1 Inter