QuantLib 金融计算——案例之普通欧式期权分析

2023-11-03 23:59

本文主要是介绍QuantLib 金融计算——案例之普通欧式期权分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • QuantLib 金融计算——案例之普通欧式期权分析
    • 概述
    • 普通欧式期权公式法定价
      • 1. 配置期权合约条款
      • 2. 构建期权对象
      • 3. 配置定价引擎
      • 4. 计算
      • 题外话:天数计算规则
    • Quote 带来的便利
    • 总结

如果未做特别说明,文中的程序都是 python3 代码。

QuantLib 金融计算——案例之普通欧式期权分析

载入 QuantLib 和其他包:

import QuantLib as ql
import numpy as np
import pandas as pdprint(ql.__version__)
1.15

概述

从金融工程中最简单的案例——“普通欧式期权公式法定价”入手,介绍 QuantLib 中期权分析的基本组件,以及如何将这些组件拼接成为一个完整的计算流程。

普通欧式期权公式法定价

采用《期权、期货及其他衍生产品(第 7 版)》第 17 章中的例子:

  • 类型:普通欧式看涨期权
  • 当前价格:49$
  • 敲定价格:50$
  • 无风险利率:5%
  • 年化波动率:20%
  • 期限:20 周

使用 BS 公式为上述期权定价,并计算希腊值。

1. 配置期权合约条款

# 配置日期计算条款
calendar = ql.UnitedStates(ql.UnitedStates.NYSE)
dayCounter = ql.Actual365Fixed(ql.Actual365Fixed.Standard)todayDate = ql.Date(11, ql.July, 2019)
maturity = todayDate + ql.Period(20, ql.Weeks)
settlementDate = todayDate# 配置期权参数
stock = 49
strike = 50
riskFreeRate = 0.05
volatility = 0.2# 配置全局估值日期
ql.Settings.instance().evaluationDate = todayDate

2. 构建期权对象

# 配置行权条款
europeanExercise = ql.EuropeanExercise(maturity)
optionType = ql.Option.Call
payoff = ql.PlainVanillaPayoff(type=optionType, strike=strike)# 构建期权对象
europeanOption = ql.VanillaOption(payoff=payoff,exercise=europeanExercise)

3. 配置定价引擎

underlying = ql.SimpleQuote(stock)
underlyingH = ql.QuoteHandle(underlying)# 无风险利率的期限结构
flatRiskFreeTS = ql.YieldTermStructureHandle(ql.FlatForward(settlementDate, riskFreeRate, dayCounter))# 波动率的期限结构
flatVolTS = ql.BlackVolTermStructureHandle(ql.BlackConstantVol(settlementDate, calendar,volatility, dayCounter))# 构建 BS 过程
bsProcess = ql.BlackScholesProcess(s0=underlyingH,riskFreeTS=flatRiskFreeTS,volTS=flatVolTS)# 基于 BS 过程的公式定价引擎
pricingEngine = ql.AnalyticEuropeanEngine(bsProcess)europeanOption.setPricingEngine(pricingEngine)

4. 计算

# RESULTSprint("Option value =", europeanOption.NPV())
print("Delta value  =", europeanOption.delta())
print("Theta value  =", europeanOption.theta())
print("Theta perday =", europeanOption.thetaPerDay())
print("Gamma value  =", europeanOption.gamma())
print("Vega value   =", europeanOption.vega())
print("Rho value    =", europeanOption.rho())
Option value = 2.395988448539984
Delta value  = 0.5213970624832108
Theta value  = -4.309457134907618
Theta perday = -0.011806731876459226
Gamma value  = 0.06563585494066533
Vega value   = 12.089225358769994
Rho value    = 8.88039853654583

题外话:天数计算规则

上述例子中的计算结果和书中给出的结果略有出入,依经验判断,最有可能造成计算不一致的原因是“天数计算规则的不一致”。

详细来说,书中期权的期限是 20 周,作者认为 20 周等于 0.3846 年,可能的依据有:

  • \(20 \times 7 / 364(\text{not } 365) \approx 0.3846\) (即 Actual/364)或
  • \(20 \times 5(\text{weekday}) / [52(\approx 365/7)\times 5(\text{weekday})] \approx 0.3846\)

目前,QuantLib 中并不支持这两种天数计算规则。例子中出现的规则 Actual365Fixed(Actual365Fixed.Standard) 认为 20 周等于 0.38356 年:

print(dayCounter.yearFraction(settlementDate, maturity))
# 0.3835616438356164

对于期权来说,天数计算规则的影响可能微不足道,但是对于固定收益类金融工具及其衍生品来说,天数计算规则的选择至关重要,“失之毫厘,谬以千里”。

Quote 带来的便利

QuantLib 中有相当多的组件接受 Handle 类型的参数,而这些参数通常持有一个 Quote 类型的变量。借助“观察者模式”,用户修改 Quote 类型变量的值将会自动通知相关组件,并使其重新进行性计算,而无需再次构建一遍计算流程。对于某些用途来讲,这带来了相当大的便利。

# USE QUOTEstock_array = np.arange(start=30, stop=70, step=0.01)NPV = np.array([np.nan] * len(stock_array))
delta = np.array([np.nan] * len(stock_array))
theta = np.array([np.nan] * len(stock_array))
# thetaPerDay = np.array([np.nan] * len(stock_array))
gamma = np.array([np.nan] * len(stock_array))
vega = np.array([np.nan] * len(stock_array))
rho = np.array([np.nan] * len(stock_array))for i, v in enumerate(stock_array):# 重置 Quote 对象的值underlying.setValue(v)# 无须再次配置计算流程,直接计算NPV[i] = europeanOption.NPV()delta[i] = europeanOption.delta()theta[i] = europeanOption.theta()# thetaPerDay[i] = europeanOption.thetaPerDay()gamma[i] = europeanOption.gamma()vega[i] = europeanOption.vega()rho[i] = europeanOption.rho()result = pd.DataFrame(data=dict(NPV=NPV,delta=delta,theta=theta,# thetaPerDay=thetaPerDay,gamma=gamma,vega=vega, rho=rho),index=stock_array)result.plot(subplots=True)

232518-20190714170058131-252664972.png

总结

下面用一副图显示上述例子中的若干变量如何汇聚成一个计算流程:

232518-20190714170105966-109512616.png

转载于:https://www.cnblogs.com/xuruilong100/p/11184791.html

这篇关于QuantLib 金融计算——案例之普通欧式期权分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/341781

相关文章

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

RabbitMQ消费端单线程与多线程案例讲解

《RabbitMQ消费端单线程与多线程案例讲解》文章解析RabbitMQ消费端单线程与多线程处理机制,说明concurrency控制消费者数量,max-concurrency控制最大线程数,prefe... 目录 一、基础概念详细解释:举个例子:✅ 单消费者 + 单线程消费❌ 单消费者 + 多线程消费❌ 多

Olingo分析和实践之EDM 辅助序列化器详解(最佳实践)

《Olingo分析和实践之EDM辅助序列化器详解(最佳实践)》EDM辅助序列化器是ApacheOlingoOData框架中无需完整EDM模型的智能序列化工具,通过运行时类型推断实现灵活数据转换,适用... 目录概念与定义什么是 EDM 辅助序列化器?核心概念设计目标核心特点1. EDM 信息可选2. 智能类

Olingo分析和实践之OData框架核心组件初始化(关键步骤)

《Olingo分析和实践之OData框架核心组件初始化(关键步骤)》ODataSpringBootService通过初始化OData实例和服务元数据,构建框架核心能力与数据模型结构,实现序列化、URI... 目录概述第一步:OData实例创建1.1 OData.newInstance() 详细分析1.1.1

Olingo分析和实践之ODataImpl详细分析(重要方法详解)

《Olingo分析和实践之ODataImpl详细分析(重要方法详解)》ODataImpl.java是ApacheOlingoOData框架的核心工厂类,负责创建序列化器、反序列化器和处理器等组件,... 目录概述主要职责类结构与继承关系核心功能分析1. 序列化器管理2. 反序列化器管理3. 处理器管理重要方

SpringBoot中六种批量更新Mysql的方式效率对比分析

《SpringBoot中六种批量更新Mysql的方式效率对比分析》文章比较了MySQL大数据量批量更新的多种方法,指出REPLACEINTO和ONDUPLICATEKEY效率最高但存在数据风险,MyB... 目录效率比较测试结构数据库初始化测试数据批量修改方案第一种 for第二种 case when第三种

解决1093 - You can‘t specify target table报错问题及原因分析

《解决1093-Youcan‘tspecifytargettable报错问题及原因分析》MySQL1093错误因UPDATE/DELETE语句的FROM子句直接引用目标表或嵌套子查询导致,... 目录报js错原因分析具体原因解决办法方法一:使用临时表方法二:使用JOIN方法三:使用EXISTS示例总结报错原

MySql基本查询之表的增删查改+聚合函数案例详解

《MySql基本查询之表的增删查改+聚合函数案例详解》本文详解SQL的CURD操作INSERT用于数据插入(单行/多行及冲突处理),SELECT实现数据检索(列选择、条件过滤、排序分页),UPDATE... 目录一、Create1.1 单行数据 + 全列插入1.2 多行数据 + 指定列插入1.3 插入否则更

MySQL中的LENGTH()函数用法详解与实例分析

《MySQL中的LENGTH()函数用法详解与实例分析》MySQLLENGTH()函数用于计算字符串的字节长度,区别于CHAR_LENGTH()的字符长度,适用于多字节字符集(如UTF-8)的数据验证... 目录1. LENGTH()函数的基本语法2. LENGTH()函数的返回值2.1 示例1:计算字符串