人工智慧能学习穿衣图像分割完整教程(附python代码)

2023-11-03 20:20

本文主要是介绍人工智慧能学习穿衣图像分割完整教程(附python代码),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

时装业是人工智能领域很有前景的领域。 研究人员可以开发具有一定实用价值的应用。 在这里我开发了一个来自Zalando在线商店的推荐和标记服装的解决方案。

在这篇文章中,我们会开发一个提取连衣裙的应用。 它输入原始的图像(从网络上下载或用智能手机拍照),并提取图像中的连衣裙。 分割的难点在于原始图像中存在了大量的噪声,但是我们会在预处理期间通过一个技巧来解决这个问题。

最后,您还可以尝试将此解决方案与之前引用的解决方案合并。 这允许您通过外出和拍摄时拍摄的照片,开发一个实时推荐和标记服装的系统。

数据集
最近有一项关于服装视觉分析和分割的Kaggle比赛。 这是一个非常有趣的比赛,但它并不适合我们。 我们的目标是从图像中提取连衣裙,因此这个数据集不太适合我们,因为它包含了比较多的冗余。 我们需要的是包含连衣裙的图像,因此最好自己来构建数据集。

我收集了网络上的一些图片,其中包含了在不同场景穿着不同类型的连衣裙的人。 然后需要创建蒙版,它在每个对象分割任务中都是必要的。

下面是我们的数据样本。 我从互联网上收集了一些原始图像,经过进一步剪切,将人与衣服分开。

人工智慧能学习穿衣图像分割完整教程(附python代码)
图像分割示例

因为我们要将背景、皮肤和连衣裙进行分离,首先要将它们区分出来。 背景和皮肤是本问题中最相关的噪声源,我们要尽量减少它们的干扰。

通过手动分割来创建蒙版,如下图所示,简单的对蒙版进行二值化。
人工智慧能学习穿衣图像分割完整教程(附python代码)
蒙版示例

最后一步,我们将所有的蒙版图像合并为三维的单个图像。 这张照片表示了原始图像的相关特征。 我们的目的主要是分离背景,皮肤和连衣裙,因此这个图像非常适合!

人工智慧能学习穿衣图像分割完整教程(附python代码)
最终蒙版

我们对数据集中的每个图像重复这个过程,为每个原始图像提供三维的对应蒙版。

模型
我们可以很容易的建立模型,过程非常简单:

我们需要训练这样一个模型,该模型输入原始图像,可以输出它的三维蒙版,即分离皮肤、背景和衣服。 训练完成之后,当一个新的图像输入时,我们就可以将它分成三个不同的部分: 背景、皮肤和衣服。 我们只关注感兴趣区域(连衣裙),这样蒙版结合原始图像,就可以裁剪出我们需要的连衣裙。

我们使用UNet建立该模型,它经常用于类似的分割任务,而且很容易在Keras中实现。

人工智慧能学习穿衣图像分割完整教程(附python代码)
在开始训练之前,要对所有的原始图像进行均值标准化。

结果和预测
在预测期间,当遇到高噪声的图像(背景或皮肤模糊等)时,模型开始动荡。 这种问题可以简单地通过增加训练图像的数量进行解决。 但我们也开发了一个巧妙的方法来避免这种问题。

我们使用 OpenCV 提供的 GrubCut 算法。 该算法利用高斯混合模型分离前景和背景。 通过它可以帮助我们找到图像中的人物。

我们只实现了简单的功能。 假设感兴趣的人站在图像的中间。

python def cut(img): img = cv.resize(img,(224,224)) ¨K5K

人工智慧能学习穿衣图像分割完整教程(附python代码)
执行GrubCut结果

下面是结合使用GrubCut和UNet之后的结果:

人工智慧能学习穿衣图像分割完整教程(附python代码)
人工智慧能学习穿衣图像分割完整教程(附python代码)
人工智慧能学习穿衣图像分割完整教程(附python代码)
人工智慧能学习穿衣图像分割完整教程(附python代码)
人工智慧能学习穿衣图像分割完整教程(附python代码)
GrubCut与UNet相结合得到了优秀的结果。

总结
在这篇文章中,我们为连衣裙分割开发了一套解决方案。 为了达到这个目的,我们使用了GrubCut和UNet。 我们计划在真实照片中使用这个解决方案,并根据它构建一个视觉推荐系统。

[来源商业新知网,原标题:从零开始实现穿衣图像分割完整教程(附python代码演练)

这篇关于人工智慧能学习穿衣图像分割完整教程(附python代码)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/340647

相关文章

Django开发时如何避免频繁发送短信验证码(python图文代码)

《Django开发时如何避免频繁发送短信验证码(python图文代码)》Django开发时,为防止频繁发送验证码,后端需用Redis限制请求频率,结合管道技术提升效率,通过生产者消费者模式解耦业务逻辑... 目录避免频繁发送 验证码1. www.chinasem.cn避免频繁发送 验证码逻辑分析2. 避免频繁

精选20个好玩又实用的的Python实战项目(有图文代码)

《精选20个好玩又实用的的Python实战项目(有图文代码)》文章介绍了20个实用Python项目,涵盖游戏开发、工具应用、图像处理、机器学习等,使用Tkinter、PIL、OpenCV、Kivy等库... 目录① 猜字游戏② 闹钟③ 骰子模拟器④ 二维码⑤ 语言检测⑥ 加密和解密⑦ URL缩短⑧ 音乐播放

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON: