C++vector等容器使用push_back和emplace_back的区别

2023-11-03 18:11

本文主要是介绍C++vector等容器使用push_back和emplace_back的区别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

push_back()方法

 emplace_back()方法

 测试1:使用两个不同的容器

 测试2:使用同一个容器

 总结


emplace_back是C++11之后往容器末尾添加元素的新方法。

具有push_back()和emplace_back()函数功能的容器:deque、list、vector

相同点:都是往容器末尾添加元素

区别:底层实现机制不同

  • push_back()向容器尾部添加元素时,首先会创建这个元素,然后再将这个元素拷贝或移动到容器中(如果是拷贝的话,事后会自行销毁先前创建的这个元素)
  • emplace_back()则直接在容器尾部创建这个元素省去了拷贝或移动元素的过程,所以在效率上更优。

push_back()方法

函数头:

void push_back (const value_type& val);
void push_back (value_type&& val);//C++11新增

函数在vector的末尾创建一个元素,并将给定的数据赋给它。由于vector的性质,如果vector已经预先分配了可用的空间,则该操作可以在常量时间内完成。

在插入前要先判断容器是否已满(size == capacity),如果未满,就构造新的元素,然后插入新的元素到末尾。如果已满,需要向申请一块较大的空间,然后将拷贝已有数据(拷贝构造函数),将原内存释放。然后再插入新的元素。

 C++中源码实现:

/***  以下程序来自STL源码 bits/stl_vector.h**  @brief  Add data to the end of the %vector.*  @param  __x  Data to be added.**  This is a typical stack operation.  The function creates an*  element at the end of the %vector and assigns the given data*  to it.  Due to the nature of a %vector this operation can be*  done in constant time if the %vector has preallocated space*  available.*/
void push_back(const value_type &__x) {if (this->_M_impl._M_finish != this->_M_impl._M_end_of_storage) {// 首先判断容器满没满,如果没满那么就构造新的元素,然后插入新的元素_Alloc_traits::construct(this->_M_impl, this->_M_impl._M_finish,__x);++this->_M_impl._M_finish; // 更新当前容器内元素数量} else// 如果满了,那么就重新申请空间,然后拷贝数据,接着插入新数据 __x_M_realloc_insert(end(), __x);
}// 如果 C++ 版本为 C++11 及以上(也就是从 C++11 开始新加了这个方法),使用 emplace_back() 代替
#if __cplusplus >= 201103L
void push_back(value_type &&__x) {emplace_back(std::move(__x));
}
#endif

 在VS2017中可以看到,push_back()的内部使用了emplace_back()来代替:

	void push_back(const _Ty& _Val){	// insert element at end, provide strong guaranteeemplace_back(_Val);}void push_back(_Ty&& _Val){	// insert by moving into element at end, provide strong guaranteeemplace_back(_STD move(_Val));}

 emplace_back()方法

	template<class... _Valty>decltype(auto) emplace_back(_Valty&&... _Val){	// insert by perfectly forwarding into element at end, provide strong guarantee// 如果还有剩余空间if (_Has_unused_capacity()){//直接在元素末尾插入新的元素return (_Emplace_back_with_unused_capacity(_STD forward<_Valty>(_Val)...));}//否则就要扩容在插入_Ty& _Result = *_Emplace_reallocate(this->_Mylast(), _STD forward<_Valty>(_Val)...);//判断是否还有剩余空间:通过两个指针判断是否指向同一个地方bool _Has_unused_capacity() const noexcept{	// micro-optimization for capacity() != size()return (this->_Myend() != this->_Mylast());}template<class... _Valty>//在容器末尾直接插入新元素decltype(auto) _Emplace_back_with_unused_capacity(_Valty&&... _Val){	// insert by perfectly forwarding into element at end, provide strong guarantee// pre: _Has_unused_capacity()_Alty_traits::construct(this->_Getal(), _Unfancy(this->_Mylast()), _STD forward<_Valty>(_Val)...);_Orphan_range(this->_Mylast(), this->_Mylast());_Ty& _Result = *this->_Mylast();++this->_Mylast();

 在emplace_back中主要是std::forward()函数起了作用,它本质是一个类型转换函数:

static_cast<_Ty&&>(_Arg)

	_NODISCARD constexpr _Ty&& forward(remove_reference_t<_Ty>&& _Arg) noexcept{	// forward an rvalue as an rvaluestatic_assert(!is_lvalue_reference_v<_Ty>, "bad forward call");return (static_cast<_Ty&&>(_Arg));}

在强制类型转换中,将参数 _Arg 传递给对应类 _Ty 的构造函数,然后调用了该类的构造函数从而完成对象创建过程。

因此,在 emplace_back() 函数中,是支持直接将构造函数所需的参数传递过去,然后构建一个新的对象出来,然后填充到容器尾部的

 测试1:使用两个不同的容器

#include <iostream>
#include <vector>
using namespace std;
class A
{
public:A(int num):n(num) {cout << "调用构造函数"<< n << endl;}A(const A& a):n(a.n) {cout << "调用拷贝构造函数:"<< n << endl;}
//	A(A && a):n(a.n) {
//		cout << "调用移动拷贝构造函数"<< n << endl;
//	}~A(){cout << "调用析构函数"<< n << endl;}private:int n;
};int main(void) {vector<A> v1,v2;cout << "使用emplace_back:" << endl;v1.emplace_back(666);//支持直接传入参数构造//cout << "v1的size:"<< v1.size() << endl;//cout << "v1的capacity:"<< v1.capacity() << endl<<endl;cout << "使用push_back:" << endl;v2.push_back(999);return 0;
}
/**
使用emplace_back:
调用构造函数666
使用push_back:
调用构造函数999
调用拷贝构造函数999
调用析构函数999
调用析构函数999
调用析构函数666
*/

 可以看到:

  1. 使用emplace_back()只会调用构造函数,它是在容器中就地构造的,所以不需要使用拷贝构造函数和移动拷贝构造函数。
  2. 使用push_back()时,首先调用构造函数,然后使用移动拷贝构造函数将元素拷贝到容器中,然后析构一开始构造的,在容器外的那个元素。
  3. 最后的两个析构函数是程序结束时,自动析构容器中的元素所产生的。 

 测试2:使用同一个容器

#include <iostream>
#include <vector>
using namespace std;
class A
{
public:A(int num):n(num) {cout << "调用构造函数"<< n << endl;}A(const A& a):n(a.n) {cout << "调用拷贝构造函数:"<< n << endl;}//A(A && a):n(a.n) {//	cout << "调用移动拷贝构造函数"<< n << endl;//}~A(){cout << "调用析构函数"<< n << endl;}private:int n;
};int main(void) {vector<A> v1;cout << "使用emplace_back:" << endl;v1.emplace_back(1);//支持直接传入参数构造cout << "v1的size:" << v1.size() << endl;cout << "v1的capacity:" << v1.capacity() << endl << endl;cout << "使用push_back:" << endl;v1.push_back(2);cout << "v1的size:" << v1.size() << endl;cout << "v1的capacity:" << v1.capacity() << endl << endl;v1.emplace_back(3);return 0;
}
/**
使用emplace_back:
调用构造函数1
v1的size:1
v1的capacity:1使用push_back:
调用构造函数2
调用拷贝构造函数:2
调用拷贝构造函数:1
调用析构函数1
调用析构函数2
v1的size:2
v1的capacity:2调用构造函数3
调用拷贝构造函数:1
调用拷贝构造函数:2
调用析构函数1
调用析构函数2
调用析构函数1
调用析构函数2
调用析构函数3
*/

最后的结果解析:

 总结

emplace_back()函数比push_back()有了一定的改进:

  • 性能优化:就地构造,直接在容器内构造对象,不用拷贝一个复制品再使用
  • 运行效率:省去了使用拷贝构造函数的过程,效率更高

参考链接: 

C++中push_back和emplace_back的区别

C++ STL vector添加元素(push_back()和emplace_back())详解

这篇关于C++vector等容器使用push_back和emplace_back的区别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/339972

相关文章

python使用库爬取m3u8文件的示例

《python使用库爬取m3u8文件的示例》本文主要介绍了python使用库爬取m3u8文件的示例,可以使用requests、m3u8、ffmpeg等库,实现获取、解析、下载视频片段并合并等步骤,具有... 目录一、准备工作二、获取m3u8文件内容三、解析m3u8文件四、下载视频片段五、合并视频片段六、错误

gitlab安装及邮箱配置和常用使用方式

《gitlab安装及邮箱配置和常用使用方式》:本文主要介绍gitlab安装及邮箱配置和常用使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1.安装GitLab2.配置GitLab邮件服务3.GitLab的账号注册邮箱验证及其分组4.gitlab分支和标签的

SpringBoot3应用中集成和使用Spring Retry的实践记录

《SpringBoot3应用中集成和使用SpringRetry的实践记录》SpringRetry为SpringBoot3提供重试机制,支持注解和编程式两种方式,可配置重试策略与监听器,适用于临时性故... 目录1. 简介2. 环境准备3. 使用方式3.1 注解方式 基础使用自定义重试策略失败恢复机制注意事项

nginx启动命令和默认配置文件的使用

《nginx启动命令和默认配置文件的使用》:本文主要介绍nginx启动命令和默认配置文件的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录常见命令nginx.conf配置文件location匹配规则图片服务器总结常见命令# 默认配置文件启动./nginx

在Windows上使用qemu安装ubuntu24.04服务器的详细指南

《在Windows上使用qemu安装ubuntu24.04服务器的详细指南》本文介绍了在Windows上使用QEMU安装Ubuntu24.04的全流程:安装QEMU、准备ISO镜像、创建虚拟磁盘、配置... 目录1. 安装QEMU环境2. 准备Ubuntu 24.04镜像3. 启动QEMU安装Ubuntu4

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

Windows下C++使用SQLitede的操作过程

《Windows下C++使用SQLitede的操作过程》本文介绍了Windows下C++使用SQLite的安装配置、CppSQLite库封装优势、核心功能(如数据库连接、事务管理)、跨平台支持及性能优... 目录Windows下C++使用SQLite1、安装2、代码示例CppSQLite:C++轻松操作SQ

C++中RAII资源获取即初始化

《C++中RAII资源获取即初始化》RAII通过构造/析构自动管理资源生命周期,确保安全释放,本文就来介绍一下C++中的RAII技术及其应用,具有一定的参考价值,感兴趣的可以了解一下... 目录一、核心原理与机制二、标准库中的RAII实现三、自定义RAII类设计原则四、常见应用场景1. 内存管理2. 文件操

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安