Vicarious发表Science论文:概率生成模型超越神经网络

本文主要是介绍Vicarious发表Science论文:概率生成模型超越神经网络,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

当前人工智能的兴起主要基于深度学习的发展,但是这种方法并不能让计算机像人类一样通过学习少量样本就能将知识泛化到很多种问题中去,这也意味着系统应用范围受限。最近,知名人工智能创业公司 Vicarious 在 Science 上发表的研究提出了一种全新概率生成模型。新的模型具有识别、分割和推理能力,在场景文字识别等任务上超过了深度神经网络。研究人员称,这种方法或许会将我们带向通用人工智能。


论文:A generative vision model that trains with high data efficiency and breaks text-based CAPTCHAs




论文链接:http://science.sciencemag.org/content/early/2017/10/25/science.aag2612


摘要:从少数样本学习并泛化至截然不同的情况是人类视觉智能所拥有的能力,这种能力尚未被先进的机器学习模型所学习到。通过系统神经科学的启示,我们引入了视觉的概率生成模型,其中基于消息传送(message-passing)的推断以统一的方式处理识别、分割和推理(Reasoning)。该模型表现出优秀的泛化和遮挡推理(occlusion-reasoning)能力,并在困难的场景文字识别基准任务上优于深度神经网络,且更具有 300 倍的数据效率(data efficient)优势。此外,该模型基本上打破了现代基于文本的验证码生成方案,即在没有具体验证码的启发式方法下分割目标。我们的模型在通向通用人工智能的路上可能是非常重要的,因为它强调了数据效率和语意合成性等特性。



图 1:人类在字母形式感知上的灵活性。(A)人类擅长解析不熟悉的验证码。(B)相同的字母可以有非常多的表现形式,上图都是「A」。(C)对形状的感知可以有助于将其解析为相近的目标。



图 2:RCN(Recursive Cortical Network)的结构。


上图(A)层级结构生成对象的轮廓,条件随机场(CRF)生成表面外观。(B)轮廓层级相同的两个子网络通过复制特定父结点的子结点特征并连接它们到该父结点的旁边分支(laterals)而保持独立的分支连接。图中绿色矩形的结点是特征「e」的复制。(C)表征正方形轮廓的三级 RCN,第二级特征表征着四个角,而每个角都使用四个线段的连接表示。(D)表征字母「A」的四级网络。



图 4:传播与特征学习的过程。


上图(A)中的 i 为前向传播(包括了侧面传播),生成多个字母的假设展示在输入图像中。PreProc 是一组类 Gabor 的滤波器,可以将像素转化为边缘似然度。ii 为后向传播和侧面传播(lateral propagation)创建的分割掩码,它可用来挑选前向传播的假设,上图掩码为「A」。iii 是错误的假设「V」正好拟合「A」和「K」的交叉点,错误的假设需要通过解析来解决。(iv)可以激活多个假设以产生联合解释来避免字母遮挡情况。(B)第二级特征上学习各种特征。彩色的圆圈表示特征激活,虚线圆圈表示提出的特征。(C)从轮廓领域学习边缘(laterals)。



图 5:用 RCN 解析验证码。


上图(A)为代表性的 ReCAPTCHA 解析方法所给出的前两个预测结果,它们的分割与标注由两个不同的标注者完成。(B)在受限的 CAPTCHA 数据集上 RCN 和 CNN 的词准率。在修改字符间距后,CNN 相比于 RCN 没有那么多的鲁棒性。(C)为不同 CAPTCHA 风格的准确率。(D)为代表性 BotDetect 解析和分割结果(使用不同颜色表示)。



图 6:使用少量样本进行训练的 MNIST 分类结果。


上图(A)为 RCN、CNN 和 CPM 的 MNIST 分类准确度。(B)为有损 MNIST 测试集上的分类准确度,图例展示了训练样本的总数。(C)为不同 RCN 配置的的 MNIST 分类准确度。



图 7:通过 RCN 生成、遮挡推理和场景文字解析。


这篇关于Vicarious发表Science论文:概率生成模型超越神经网络的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/336974

相关文章

Python实现自动化Word文档样式复制与内容生成

《Python实现自动化Word文档样式复制与内容生成》在办公自动化领域,高效处理Word文档的样式和内容复制是一个常见需求,本文将展示如何利用Python的python-docx库实现... 目录一、为什么需要自动化 Word 文档处理二、核心功能实现:样式与表格的深度复制1. 表格复制(含样式与内容)2

python如何生成指定文件大小

《python如何生成指定文件大小》:本文主要介绍python如何生成指定文件大小的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录python生成指定文件大小方法一(速度最快)方法二(中等速度)方法三(生成可读文本文件–较慢)方法四(使用内存映射高效生成

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

Maven项目中集成数据库文档生成工具的操作步骤

《Maven项目中集成数据库文档生成工具的操作步骤》在Maven项目中,可以通过集成数据库文档生成工具来自动生成数据库文档,本文为大家整理了使用screw-maven-plugin(推荐)的完... 目录1. 添加插件配置到 pom.XML2. 配置数据库信息3. 执行生成命令4. 高级配置选项5. 注意事

SpringBoot整合Sa-Token实现RBAC权限模型的过程解析

《SpringBoot整合Sa-Token实现RBAC权限模型的过程解析》:本文主要介绍SpringBoot整合Sa-Token实现RBAC权限模型的过程解析,本文给大家介绍的非常详细,对大家的学... 目录前言一、基础概念1.1 RBAC模型核心概念1.2 Sa-Token核心功能1.3 环境准备二、表结

MybatisX快速生成增删改查的方法示例

《MybatisX快速生成增删改查的方法示例》MybatisX是基于IDEA的MyBatis/MyBatis-Plus开发插件,本文主要介绍了MybatisX快速生成增删改查的方法示例,文中通过示例代... 目录1 安装2 基本功能2.1 XML跳转2.2 代码生成2.2.1 生成.xml中的sql语句头2

使用Python自动化生成PPT并结合LLM生成内容的代码解析

《使用Python自动化生成PPT并结合LLM生成内容的代码解析》PowerPoint是常用的文档工具,但手动设计和排版耗时耗力,本文将展示如何通过Python自动化提取PPT样式并生成新PPT,同时... 目录核心代码解析1. 提取 PPT 样式到 jsON关键步骤:代码片段:2. 应用 JSON 样式到

SpringBoot实现二维码生成的详细步骤与完整代码

《SpringBoot实现二维码生成的详细步骤与完整代码》如今,二维码的应用场景非常广泛,从支付到信息分享,二维码都扮演着重要角色,SpringBoot是一个非常流行的Java基于Spring框架的微... 目录一、环境搭建二、创建 Spring Boot 项目三、引入二维码生成依赖四、编写二维码生成代码五

Android与iOS设备MAC地址生成原理及Java实现详解

《Android与iOS设备MAC地址生成原理及Java实现详解》在无线网络通信中,MAC(MediaAccessControl)地址是设备的唯一网络标识符,本文主要介绍了Android与iOS设备M... 目录引言1. MAC地址基础1.1 MAC地址的组成1.2 MAC地址的分类2. android与I

PyQt5+Python-docx实现一键生成测试报告

《PyQt5+Python-docx实现一键生成测试报告》作为一名测试工程师,你是否经历过手动填写测试报告的痛苦,本文将用Python的PyQt5和python-docx库,打造一款测试报告一键生成工... 目录引言工具功能亮点工具设计思路1. 界面设计:PyQt5实现数据输入2. 文档生成:python-