稳态视觉诱发电位(SSVEP)丨典型性相关分析(CCA)

2023-11-03 08:20

本文主要是介绍稳态视觉诱发电位(SSVEP)丨典型性相关分析(CCA),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

稳态视觉诱发电位(SSVEP)丨典型性相关分析(CCA)

文章目录

  • 稳态视觉诱发电位(SSVEP)丨典型性相关分析(CCA)
    • 1. 准备工具:
    • 2. 实验数据
    • 3. 安装和运行
    • 4. 结论

前言:采集一组脑电数据,准备使用 bci_toolbox进行分析时,发现时隔一个月就把使用步骤忘得一干二净。还是记录一下,便于日后查阅。

1. 准备工具:

软件:Matlab
工具包:bci_toolbox

2. 实验数据

San Diego Square Joint Frequnecy-Phase Modulation SSVEP (ftp://sccn.ucsd.edu/pub/cca_ssvep)

3. 安装和运行

  1. 首先将bci_toolbox加载入Matlab设置路径中,例如:F:\GitHub\bci_toolbox。
  2. Matlab路径调整到F:\GitHub\bci_toolbox路径下运行setup.m
  3. 在上述路径下,新建文件夹:Datasets,再创建一个新文件epochs,如下图。
    在这里插入图片描述
  4. 打开dataio\dataio_create_epochs_SM_SanDiego.m,命令行窗口输入:
% 数据长度和带通滤波
epoch_length = [0 4000];
filter_band = [5 40];
dataio_create_epochs_SM_SanDiego(epoch_length, filter_band)
  1. 运行上面代码之后会在datasets\epochs\ssvep_sandiego\SM下产生训练集和测试集。
  2. 运行define_approach_SSVEP.m,结果如下:
>> Average accuracy on SSVEP_SANDIEGO 92.5Time elapsed for computing: 5.3458 seconds

4. 结论

说明使用SSVEP_SANDIEGO数据集,数据长度为**[0 4000],带通滤波器[5 40],识别算法CCA**,平均正确率:92.5%

这篇关于稳态视觉诱发电位(SSVEP)丨典型性相关分析(CCA)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/336840

相关文章

Android 缓存日志Logcat导出与分析最佳实践

《Android缓存日志Logcat导出与分析最佳实践》本文全面介绍AndroidLogcat缓存日志的导出与分析方法,涵盖按进程、缓冲区类型及日志级别过滤,自动化工具使用,常见问题解决方案和最佳实... 目录android 缓存日志(Logcat)导出与分析全攻略为什么要导出缓存日志?按需过滤导出1. 按

Linux中的HTTPS协议原理分析

《Linux中的HTTPS协议原理分析》文章解释了HTTPS的必要性:HTTP明文传输易被篡改和劫持,HTTPS通过非对称加密协商对称密钥、CA证书认证和混合加密机制,有效防范中间人攻击,保障通信安全... 目录一、什么是加密和解密?二、为什么需要加密?三、常见的加密方式3.1 对称加密3.2非对称加密四、

MySQL中读写分离方案对比分析与选型建议

《MySQL中读写分离方案对比分析与选型建议》MySQL读写分离是提升数据库可用性和性能的常见手段,本文将围绕现实生产环境中常见的几种读写分离模式进行系统对比,希望对大家有所帮助... 目录一、问题背景介绍二、多种解决方案对比2.1 原生mysql主从复制2.2 Proxy层中间件:ProxySQL2.3

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

Olingo分析和实践之EDM 辅助序列化器详解(最佳实践)

《Olingo分析和实践之EDM辅助序列化器详解(最佳实践)》EDM辅助序列化器是ApacheOlingoOData框架中无需完整EDM模型的智能序列化工具,通过运行时类型推断实现灵活数据转换,适用... 目录概念与定义什么是 EDM 辅助序列化器?核心概念设计目标核心特点1. EDM 信息可选2. 智能类

Olingo分析和实践之OData框架核心组件初始化(关键步骤)

《Olingo分析和实践之OData框架核心组件初始化(关键步骤)》ODataSpringBootService通过初始化OData实例和服务元数据,构建框架核心能力与数据模型结构,实现序列化、URI... 目录概述第一步:OData实例创建1.1 OData.newInstance() 详细分析1.1.1