毕业即失业,2021年应届生就业分析,这份工作或可解救

2023-11-03 06:10

本文主要是介绍毕业即失业,2021年应届生就业分析,这份工作或可解救,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述
随着我国经济体制改革的不断深入,教育体制改革也在如火如荼的展开。首先是我国高等教育体制的改革,与之相应的是各大高校的连年扩招,它导致的结果是每年高校毕业生人数在持续攀升。

根据教育部公布的数据显示,2021届高校毕业生总规模将达到909万人,同比增加35万,再创历史新高。这也是我国高校毕业生人数首次突破900万大关。

如此多的毕业生,如何就业成了一个难题?虽然国家和政府不断推出大学生就业优惠政策和就业岗位,但面对不断增长的就业人群,那只不过是杯水车薪,大学生的就业问题依然得不到根本性的解决。

今年大学生的就业形势严峻,其中一部分是受到了新冠疫情的影响,另一部分是经济结果调整的原因。据相关部门统计,我国就业市场上青年人群的失业率较高,特别是刚毕业的大学生就业压力大,失业率达到19.3%,同比高3.9%。

在这里插入图片描述

应届毕业生就业难的原因主要因为三个原因:
1.就业岗位与应届毕业生人数失去平衡,有限的就业岗位无法满足就业人数,造成部分应届毕业生失业。还有一个原因就是往届毕业生与应届毕业生组成了一个庞大群体,互相竞争,也是造成应届毕业生失业的原因之一。

2.工作经验较少,刚刚毕业的大学生没有工作经验,而现在的公司更愿意招收有工作经验的员工。部分大学生觉得自己高学历、有知识、有能力,但是企业更看中的实操能力,这里我建议刚刚毕业的大学生可以学习一些技能,提升一下自己的实操能力。

3.刚刚毕业时,一些大学生发现他们对自己的专业没有太大的兴趣,另一些人则发现他们选择的领域严重缺乏工作机会。许多大学生认为出来工作,一定要专业对口,不对口就是浪费,就是不务正业,即使有适合他做的工作岗位,也不接受,很少有人一开始就知道自己要什么。

综上所述,对于刚要踏入职场的应届生来说,选择一个发展前景好的行业可以带给我们巨大的优势,而掌握一项工作技能则非常关键,可以帮助我们顺利找到工作,提升职场竞争力和收入。

在这里插入图片描述

清华大学经管学院发布的《中国经济的数字化转型:人才与就业》报告显示,2025年,数据分析人才缺口预计将达到230万。

这么大的人才缺口,数据分析俨然是一片广阔的蓝海!

这种大势之下,数据分析思维已经不只是数据分析师的“专业”了,包括销售、市场、运营、策划、产品等等前端的职位都需要通过数据分析来帮助自己的工作,甚至连后台的财务、法务、人事等也开始需要通过数据分析来提升效率。

可以这么说,如果你在企业之中工作,你未来会开始越来越多的和数据打交道,这个时候数据分析已经成为工作的必要条件。

这是在某招聘网站截取的数据分析师就业薪资,可以看到对于刚毕业的大学生,数据分析师薪资水平可以达到10K以上。

在这里插入图片描述

目前,互联网、金融、咨询、电信、零售、医疗、旅游等行业,都迫切需要专门从事数据采集、清洗、处理、分析并能制作业务报告、提供决策的新型数据分析人才。

CDA数据分析师认证得到了教育部主管协会中国成人教育协会认可,跻身为2020年“终身学习品牌项目”,成为大数据及人工智能领域长期、稳定、专业的行业人才标准。

CDA数据分析师行业标准由国际范围数据科学领域的行业专家、学者及知名企业共同制定并每年修订更新,确保了公立性、权威性、前沿性,符合当今全球数据科学技术潮流,为各行业企业和机构提供数据人才参照标准。

数据分析需求大
由于数据分析人才就业市场需求量巨大,未来5年数据分析师将以超20%的年增长率高速增长,市场迫切需求让数据分析岗位呈现出多元化面貌。

在这里插入图片描述

纯数据孵化出数据工程师、数据科学家和人工智能专家等,而伴随企业数字化转型,不同行业、不同岗位都对数据分析技能,提出了个性化的要求,使得数据赋能岗位更加多样化。

因此,分工细、选择多的数据分析技能得到了求职者青睐,这也是CDA认证考生数量逐年稳健攀升的关键因素之一。

国家政策扶持
▲《中共中央关于制定国民经济和社会发展第十四个五年规划和二〇三五年远景目标的建议》中强调:“加快数字化发展。发展数字经济,打造具有国际竞争力的数字产业集群。”

▲ 2019世界人工智能大会发布,全国AI&大数据人才需求呈快速增长态势,约为4年前的12倍。

▲ 清华大学经管学院发布的《中国经济的数字化转型:人才与就业》报告显示,2025年,数据分析人才缺口预计将达到230万。

目前,数据分析师在国内的人才需求量非常大,且国家政策扶持力度在迅速地攀升。

无论是从国家发展的战略方向,还是就业市场的巨大规模导向,都揭示了数据分析师技能的重要性,这是个具有代表性的跨时代技能。

这篇关于毕业即失业,2021年应届生就业分析,这份工作或可解救的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/336120

相关文章

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

Olingo分析和实践之EDM 辅助序列化器详解(最佳实践)

《Olingo分析和实践之EDM辅助序列化器详解(最佳实践)》EDM辅助序列化器是ApacheOlingoOData框架中无需完整EDM模型的智能序列化工具,通过运行时类型推断实现灵活数据转换,适用... 目录概念与定义什么是 EDM 辅助序列化器?核心概念设计目标核心特点1. EDM 信息可选2. 智能类

Olingo分析和实践之OData框架核心组件初始化(关键步骤)

《Olingo分析和实践之OData框架核心组件初始化(关键步骤)》ODataSpringBootService通过初始化OData实例和服务元数据,构建框架核心能力与数据模型结构,实现序列化、URI... 目录概述第一步:OData实例创建1.1 OData.newInstance() 详细分析1.1.1

Java中的xxl-job调度器线程池工作机制

《Java中的xxl-job调度器线程池工作机制》xxl-job通过快慢线程池分离短时与长时任务,动态降级超时任务至慢池,结合异步触发和资源隔离机制,提升高频调度的性能与稳定性,支撑高并发场景下的可靠... 目录⚙️ 一、调度器线程池的核心设计 二、线程池的工作流程 三、线程池配置参数与优化 四、总结:线程

Olingo分析和实践之ODataImpl详细分析(重要方法详解)

《Olingo分析和实践之ODataImpl详细分析(重要方法详解)》ODataImpl.java是ApacheOlingoOData框架的核心工厂类,负责创建序列化器、反序列化器和处理器等组件,... 目录概述主要职责类结构与继承关系核心功能分析1. 序列化器管理2. 反序列化器管理3. 处理器管理重要方

SpringBoot中六种批量更新Mysql的方式效率对比分析

《SpringBoot中六种批量更新Mysql的方式效率对比分析》文章比较了MySQL大数据量批量更新的多种方法,指出REPLACEINTO和ONDUPLICATEKEY效率最高但存在数据风险,MyB... 目录效率比较测试结构数据库初始化测试数据批量修改方案第一种 for第二种 case when第三种

解决1093 - You can‘t specify target table报错问题及原因分析

《解决1093-Youcan‘tspecifytargettable报错问题及原因分析》MySQL1093错误因UPDATE/DELETE语句的FROM子句直接引用目标表或嵌套子查询导致,... 目录报js错原因分析具体原因解决办法方法一:使用临时表方法二:使用JOIN方法三:使用EXISTS示例总结报错原