PostgreSQL 进阶 - 模式匹配,过滤敏感数据,数据清理

本文主要是介绍PostgreSQL 进阶 - 模式匹配,过滤敏感数据,数据清理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 模式匹配

SELECT phone_number FROM customers;

在这里插入图片描述

使用正则表达式替换所有非数字字符
这样可以清理和标准化电话号码数据,去除任何非数字字符,只保留数字
UPDATE customers
SET phone_number =
REGEXP_REPLACE(phone_number, '[^0-9]', '', 'g')
WHERE phone_number ~ '[^0-9]';
  • 使用正则表达式 [^0-9] 匹配任何非数字字符,并将其替换为空字符串 ‘’。‘g’ 表示全局替换,即所有匹配的地方都会被替换。
  • phone_number ~ ‘[^0-9]’:这是一个正则表达式匹配条件,它匹配 phone_number 列中包含任何非数字字符的值。
SELECT phone_number FROM customers;

在这里插入图片描述

使用正则表达式匹配包含 10 个数字字符的电话号码,并将其格式化为 xxx-xxx-xxxx 的形式
UPDATE customers
SET phone_number =
REGEXP_REPLACE(phone_number, '([0-9]{3})([0-9]{3})([0-9]{4})',
'\1-\2-\3')
WHERE phone_number ~'^[0-9]{10}$';
  • 使用正则表达式 ([0-9]{3})([0-9]{3})([0-9]{4}) 匹配电话号码的特定模式
  • 使用 \1-\2-\3 替换该模式,其中 \1、\2 和 \3 是正则表达式中捕获的三组数字
  • phone_number ~ ‘^[0-9]{10}$’:这是一个正则表达式匹配条件,它匹配 phone_number 列中包含且只包含 10 个数字字符的值。

在这里插入图片描述

2. 过滤敏感数据

在这里插入图片描述

SELECT
CONCAT(firstname, ' ', UPPER(SUBSTRING(lastname, 1, 1)), '.')
AS fullname,
email,
(SELECT CONCAT('***-***-',
RIGHT(phone_number, 4)) AS masked_phone_number)
FROM customers;
  • SUBSTRING() 函数用于提取 lastname 的第一个字符。第一个1 是起始位置参数,指定要提取的子字符串的起始位置。在这里,它是 lastname 字符串中的第一个字符。
    第二个1 是长度参数,指定要提取的子字符串的长度。在这里,它表示只提取一个字符。
  • 查询结果将以 ***-***- 开头,后跟原始 phone_number 值的最后四位数字。
    在这里插入图片描述

3. 数据清理

SELECT order_id, street, city, state, zip_code FROM orders;

在这里插入图片描述

UPDATE orders
SET
street = INITCAP(TRIM(street)),
city = INITCAP(TRIM(city)),
state = UPPER(TRIM(state)),
zip_code = SUBSTRING(REGEXP_REPLACE(TRIM(zip_code), '[^0-9]', '', 'g'), 1, 5)
WHERE (
street != INITCAP(TRIM(street)) OR
city != INITCAP(TRIM(state)) OR
state != UPPER(TRIM(state)) OR
SUBSTRING(REGEXP_REPLACE(TRIM(zip_code), '[^0-9]', '', 'g'), 1, 5) != zip_code OR
LENGTH(zip_code) != 5);
  • street = INITCAP(TRIM(street)),将街道名字的首字母大写,并去除首尾空格。
  • 去除邮政编码中的非数字字符,并截取前5位数字作为新的邮政编码
    在这里插入图片描述

4. 产生虚拟数据

SELECT * FROM bookmarks;

在这里插入图片描述

INSERT INTO bookmarks (url, name, description)
SELECT 'http://example.com/' || generate_series AS url,
'Bookmark ' || generate_series AS name,
'Description for Bookmark ' || generate_series AS description FROM generate_series(1,50) AS generate_series
RETURNING *;

通过从1到50生成一系列数字,将生成的数字与预定义的字符串连接起来,并将结果分别插入“url”、“name” 和 “description” 字段。
在这里插入图片描述

5. 密码加密

SELECT * FROM users;

在这里插入图片描述

ALTER TABLE users
ADD COLUMN password_hash VARCHAR(255),
ADD COLUMN password_salt VARCHAR(255);

在这里插入图片描述

UPDATE users
SET password_salt = substr(md5(random()::text), 1, 16);
  • 将“password_salt”字段设置为一个随机生成的字符串,该字符串是通过将一个随机数转换为文本格式后进行MD5加密,并截取前16位字符得到的。
UPDATE users
SET password_hash = md5(concat(password_salt, password))
WHERE password_hash IS NULL;
  • 将“password_hash”字段设置为“password_salt”和“password”字段拼接后进行MD5加密得到的结果。

在这里插入图片描述

6. 取消正在运行的queries

SELECT pid, query, xact_start, wait_event, wait_event_type
FROM pg_stat_activity
WHERE backend_type = 'client backend'
AND wait_event IS NOT NULL;
  • 从“pg_stat_activity”视图中选择特定列的数据。它选择了“pid”(进程ID)、“query”(查询语句)、“xact_start”(事务开始时间)、“wait_event”(等待事件)和“wait_event_type”(等待事件类型)列。
    在这里插入图片描述
SELECT pg_cancel_backend(3236);
  • 执行这条 SQL 语句后,具有进程 ID 为 3236 的进程将会被取消。
    在这里插入图片描述
SELECT pid, query, xact_start, wait_event, wait_event_type
FROM pg_stat_activity
WHERE backend_type = 'client backend'
AND wait_event IS NOT NULL;

在这里插入图片描述

这篇关于PostgreSQL 进阶 - 模式匹配,过滤敏感数据,数据清理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/335674

相关文章

PostgreSQL数据库密码被遗忘时的操作步骤

《PostgreSQL数据库密码被遗忘时的操作步骤》密码遗忘是常见的用户问题,因此提供一种安全的遗忘密码找回机制是十分必要的,:本文主要介绍PostgreSQL数据库密码被遗忘时的操作步骤的相关资... 目录前言一、背景知识二、Windows环境下的解决步骤1. 找到PostgreSQL安装目录2. 修改p

PostgreSQL 默认隔离级别的设置

《PostgreSQL默认隔离级别的设置》PostgreSQL的默认事务隔离级别是读已提交,这是其事务处理系统的基础行为模式,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一 默认隔离级别概述1.1 默认设置1.2 各版本一致性二 读已提交的特性2.1 行为特征2.2

PostgreSQL中MVCC 机制的实现

《PostgreSQL中MVCC机制的实现》本文主要介绍了PostgreSQL中MVCC机制的实现,通过多版本数据存储、快照隔离和事务ID管理实现高并发读写,具有一定的参考价值,感兴趣的可以了解一下... 目录一 MVCC 基本原理python1.1 MVCC 核心概念1.2 与传统锁机制对比二 Postg

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

从基础到进阶详解Pandas时间数据处理指南

《从基础到进阶详解Pandas时间数据处理指南》Pandas构建了完整的时间数据处理生态,核心由四个基础类构成,Timestamp,DatetimeIndex,Period和Timedelta,下面我... 目录1. 时间数据类型与基础操作1.1 核心时间对象体系1.2 时间数据生成技巧2. 时间索引与数据

使用SpringBoot整合Sharding Sphere实现数据脱敏的示例

《使用SpringBoot整合ShardingSphere实现数据脱敏的示例》ApacheShardingSphere数据脱敏模块,通过SQL拦截与改写实现敏感信息加密存储,解决手动处理繁琐及系统改... 目录痛点一:痛点二:脱敏配置Quick Start——Spring 显示配置:1.引入依赖2.创建脱敏

详解如何使用Python构建从数据到文档的自动化工作流

《详解如何使用Python构建从数据到文档的自动化工作流》这篇文章将通过真实工作场景拆解,为大家展示如何用Python构建自动化工作流,让工具代替人力完成这些数字苦力活,感兴趣的小伙伴可以跟随小编一起... 目录一、Excel处理:从数据搬运工到智能分析师二、PDF处理:文档工厂的智能生产线三、邮件自动化:

Python数据分析与可视化的全面指南(从数据清洗到图表呈现)

《Python数据分析与可视化的全面指南(从数据清洗到图表呈现)》Python是数据分析与可视化领域中最受欢迎的编程语言之一,凭借其丰富的库和工具,Python能够帮助我们快速处理、分析数据并生成高质... 目录一、数据采集与初步探索二、数据清洗的七种武器1. 缺失值处理策略2. 异常值检测与修正3. 数据

pandas实现数据concat拼接的示例代码

《pandas实现数据concat拼接的示例代码》pandas.concat用于合并DataFrame或Series,本文主要介绍了pandas实现数据concat拼接的示例代码,具有一定的参考价值,... 目录语法示例:使用pandas.concat合并数据默认的concat:参数axis=0,join=