串口UART模式中断收发数据——华大HC32F460

2023-11-03 04:31

本文主要是介绍串口UART模式中断收发数据——华大HC32F460,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、基础知识

二、代码实现

宏定义

串口初始化

定时器初始化

时钟初始化

相关中断回调函数

mian函数

三、问题

1.有个坑

四、结果


一、基础知识

USART1基地址为:0x4001_D000

USART2基地址为:0x4001_D400

USART3基地址为:0x4002_1000

USART4基地址为:0x4002_1400

引脚映射:华大HC32F460与STM32F10x的区别在于:HC32F460有64个引脚支持Fun32~63功能选择,即我们说的重映射,Fun32~63主要为串行通信功能(包含USART,SPI, I2C, I2S, CAN);分为了Fun_Grp1、Fun_Grp2。具体可看<数据手册-引脚功能表>。而STM32F10x的GPIO引脚重映射是有规定的,所以华大的用起来比较灵活。

接收超时定时器通道选择
TIMEOUT 计数器采用Timer0 模块的计数器,具体对应关系如下:
USART1:Timer0 Unit1 A 通道
USART2:Timer0 Unit1 B 通道
USART3:Timer0 Unit2 A 通道
USART4:Timer0 Unit2 B 通道

USART串口通信的基本参数配置为一致,也是最常用的模式

UsartIntClkCkOutput:时钟为内部时钟输出

UsartClkDiv_16:16分频

UsartDataBits8:8位数据位

UsartDataLsbFirst:低位在前

UsartOneStopBit:1位停止位

UsartParityNone:无奇偶校验

UsartSamleBit8:8位采样

UsartStartBitFallEdge:起始位检测下降沿

UsartRtsEnable:RTS允许

二、代码实现

本样例主要展示USART外设配置为USART外设配置为UART模式时通过中断方式收发数据。

串口助手软件配置端口参数:

波特率:115200

数据位:8

校验位:None

停止位:1

宏定义

/* USART channel definition */
#define USART_CH                         (M4_USART4)
/* USART baudrate definition */
#define USART_BAUDRATE                  (115200ul)
/* USART Interrupt Number */
#define USART_RX_IRQn                   (Int000_IRQn)
#define USART_ERR_IRQn                  (Int001_IRQn)
#define USART_RTO_IRQn                  (Int002_IRQn)
#define USART_TX_IRQn                   (Int003_IRQn)
#define USART_CMP_IRQn                  (Int004_IRQn)
/* USART RX Port/Pin definition */
#define USART_RX_PORT                   (PortE)
#define USART_RX_PIN                    (Pin14)
#define USART_RX_FUNC                   (Func_Usart4_Rx)#define USART_TX_PORT                   (PortE)
#define USART_TX_PIN                    (Pin15)
#define USART_TX_FUNC                   (Func_Usart4_Tx)/* USART interrupt number  */
#define USART_RI_NUM                    (INT_USART4_RI)
#define USART_EI_NUM                    (INT_USART4_EI)
#define USART_RTO_NUM                   (INT_USART4_RTO)
#define USART_TI_NUM                    (INT_USART4_TI)
#define USART_TCI_NUM                   (INT_USART4_TCI)#define set                              Ok
#define reset                            Error#define ENCODER_LEN      6static uint16_t u16RxData;

串口初始化

/*串口初始化*/
void UART_Init(void)
{en_result_t enRet = Ok;stc_irq_regi_conf_t stcIrqRegiCfg;/*配置串口使用的时钟和基本通信配置*/const stc_usart_uart_init_t stcInitCfg = {UsartIntClkCkOutput,UsartClkDiv_16,//时钟分频UsartDataBits8,UsartDataLsbFirst,UsartOneStopBit,UsartParityNone,UsartSamleBit8,UsartStartBitFallEdge,UsartRtsEnable,};/*打开时钟*/PWC_Fcg1PeriphClockCmd(PWC_FCG1_PERIPH_USART4, Enable);/*配置相应的IO作为串口的RX引脚*/PORT_SetFunc(USART_TX_PORT, USART_TX_PIN, USART_TX_FUNC, Disable);PORT_SetFunc(USART_RX_PORT, USART_RX_PIN, USART_RX_FUNC, Disable);/*初始化串口配置*/enRet = USART_UART_Init(USART_CH, &stcInitCfg);while (enRet != Ok);/*串口波特率设置*/enRet = USART_SetBaudrate(USART_CH, USART_BAUDRATE);while (enRet != Ok);/*设置串口接收中断*/stcIrqRegiCfg.enIRQn = USART_RX_IRQn;stcIrqRegiCfg.pfnCallback = &Usart4RxIrqCallback;stcIrqRegiCfg.enIntSrc = USART_RI_NUM;enIrqRegistration(&stcIrqRegiCfg);NVIC_SetPriority(stcIrqRegiCfg.enIRQn, DDL_IRQ_PRIORITY_DEFAULT);NVIC_ClearPendingIRQ(stcIrqRegiCfg.enIRQn);NVIC_EnableIRQ(stcIrqRegiCfg.enIRQn);/*设置串口接收错误中断*/stcIrqRegiCfg.enIRQn = USART_ERR_IRQn;             /* 中断号,可通过参考手册查阅对应的中断号 */stcIrqRegiCfg.pfnCallback = &Usart4ErrIrqCallback;  /* 中断回调函数 */stcIrqRegiCfg.enIntSrc = USART_EI_NUM;             /* 错误中断向量号,可通过参考手册查阅对应的中断号*/enIrqRegistration(&stcIrqRegiCfg);NVIC_SetPriority(stcIrqRegiCfg.enIRQn, DDL_IRQ_PRIORITY_DEFAULT);/* 配置中断优先级 */NVIC_ClearPendingIRQ(stcIrqRegiCfg.enIRQn);         /*先清一下这个中断的标志位(置零)*/NVIC_EnableIRQ(stcIrqRegiCfg.enIRQn);               /*在使能这个中断*//*设置接收超时中断*/stcIrqRegiCfg.enIRQn = USART_RTO_IRQn;                     /* 中断号,可通过参考手册查阅对应的中断号 */stcIrqRegiCfg.pfnCallback = &Usart4TimeoutIrqCallback;      /* 中断回调函数 */stcIrqRegiCfg.enIntSrc = INT_USART4_RTO;                    /* 错误中断向量号,可通过参考手册查阅对应的中断号*/enIrqRegistration(&stcIrqRegiCfg);NVIC_SetPriority(stcIrqRegiCfg.enIRQn, DDL_IRQ_PRIORITY_DEFAULT);   /* 配置中断优先级 */NVIC_ClearPendingIRQ(stcIrqRegiCfg.enIRQn);                         /*先清一下这个中断的标志位(置零)*/NVIC_EnableIRQ(stcIrqRegiCfg.enIRQn);                               /*在使能这个中断*//*设置串口发送中断*/stcIrqRegiCfg.enIRQn = USART_TX_IRQn;               /* 中断号,可通过参考手册查阅对应的中断号 */stcIrqRegiCfg.pfnCallback = &UsartTxIrqCallback;     /* 中断回调函数 */stcIrqRegiCfg.enIntSrc = USART_TI_NUM;              /* 错误中断向量号,可通过参考手册查阅对应的中断号*/enIrqRegistration(&stcIrqRegiCfg);NVIC_SetPriority(stcIrqRegiCfg.enIRQn, DDL_IRQ_PRIORITY_DEFAULT);   /* 配置中断优先级 */NVIC_ClearPendingIRQ(stcIrqRegiCfg.enIRQn);                          /*先清一下这个中断的标志位(置零)*/NVIC_EnableIRQ(stcIrqRegiCfg.enIRQn);                                /*在使能这个中断*//*设置串口发送完成中断*/stcIrqRegiCfg.enIRQn = USART_CMP_IRQn;                             /* 中断号,可通过参考手册查阅对应的中断号 */stcIrqRegiCfg.pfnCallback = &UsartTxCmpltIrqCallback;               /* 中断回调函数 */stcIrqRegiCfg.enIntSrc = USART_TCI_NUM;                            /* 错误中断向量号,可通过参考手册查阅对应的中断号*/enIrqRegistration(&stcIrqRegiCfg);NVIC_SetPriority(stcIrqRegiCfg.enIRQn, DDL_IRQ_PRIORITY_DEFAULT);   /* 配置中断优先级 */NVIC_ClearPendingIRQ(stcIrqRegiCfg.enIRQn);                         /*先清一下这个中断的标志位(置零)*/NVIC_EnableIRQ(stcIrqRegiCfg.enIRQn);                               /*在使能这个中断*/USART_FuncCmd(USART_CH, UsartTx, Enable);//使能发送USART_FuncCmd(USART_CH, UsartRx, Enable);//使能接收USART_FuncCmd(USART_CH, UsartRxInt, Enable);//使能接收中断USART_FuncCmd(USART_CH, UsartTimeOut, Enable);//使能超时USART_FuncCmd(USART_CH, UsartTimeOutInt, Enable);//使能超时中断
}

定时器初始化

/*usart timer0初始化*/
static void Usart_Timer0_Init(void)
{stc_clk_freq_t stcClkTmp;stc_tim0_base_init_t stcTimerCfg;stc_tim0_trigger_init_t StcTimer0TrigInit;MEM_ZERO_STRUCT(stcClkTmp);MEM_ZERO_STRUCT(stcTimerCfg);MEM_ZERO_STRUCT(StcTimer0TrigInit);/* Timer0 peripheral enable */PWC_Fcg2PeriphClockCmd(PWC_FCG2_PERIPH_TIM02, Enable);/* Clear CNTAR register for channel A */
//	TIMER0_WriteCntReg(LCD_TMR_UNIT, Tim0_ChannelA, 0u);TIMER0_WriteCntReg(M4_TMR02, Tim0_ChannelB, 0u);/* Config register for channel A */stcTimerCfg.Tim0_CounterMode = Tim0_Async;stcTimerCfg.Tim0_AsyncClockSource = Tim0_XTAL32;stcTimerCfg.Tim0_ClockDivision = Tim0_ClkDiv8;stcTimerCfg.Tim0_CmpValue = 32000u;TIMER0_BaseInit(M4_TMR02, Tim0_ChannelB, &stcTimerCfg);/* Clear compare flag */TIMER0_ClearFlag(M4_TMR02, Tim0_ChannelB);/* Config timer0 hardware trigger */StcTimer0TrigInit.Tim0_InTrigEnable = false;StcTimer0TrigInit.Tim0_InTrigClear = true;StcTimer0TrigInit.Tim0_InTrigStart = true;StcTimer0TrigInit.Tim0_InTrigStop = false;TIMER0_HardTriggerInit(M4_TMR02, Tim0_ChannelB, &StcTimer0TrigInit);
}

时钟初始化

/*时钟初始化*/
static void ClkInit(void)
{stc_clk_xtal_cfg_t   stcXtalCfg;stc_clk_mpll_cfg_t   stcMpllCfg;en_clk_sys_source_t  enSysClkSrc;stc_clk_sysclk_cfg_t stcSysClkCfg;MEM_ZERO_STRUCT(enSysClkSrc);MEM_ZERO_STRUCT(stcSysClkCfg);MEM_ZERO_STRUCT(stcXtalCfg);MEM_ZERO_STRUCT(stcMpllCfg);/* Set bus clk div. */stcSysClkCfg.enHclkDiv  = ClkSysclkDiv1;  /* Max 168MHz */stcSysClkCfg.enExclkDiv = ClkSysclkDiv2;  /* Max 84MHz */stcSysClkCfg.enPclk0Div = ClkSysclkDiv1;  /* Max 168MHz */stcSysClkCfg.enPclk1Div = ClkSysclkDiv2;  /* Max 84MHz */stcSysClkCfg.enPclk2Div = ClkSysclkDiv4;  /* Max 60MHz */stcSysClkCfg.enPclk3Div = ClkSysclkDiv4;  /* Max 42MHz */stcSysClkCfg.enPclk4Div = ClkSysclkDiv2;  /* Max 84MHz */CLK_SysClkConfig(&stcSysClkCfg);/* Switch system clock source to MPLL. *//* Use Xtal as MPLL source. */stcXtalCfg.enMode = ClkXtalModeOsc;stcXtalCfg.enDrv = ClkXtalLowDrv;stcXtalCfg.enFastStartup = Enable;CLK_XtalConfig(&stcXtalCfg);CLK_XtalCmd(Enable);/* MPLL config. */stcMpllCfg.pllmDiv = 1ul;stcMpllCfg.plln = 50ul;stcMpllCfg.PllpDiv = 4ul;stcMpllCfg.PllqDiv = 4ul;stcMpllCfg.PllrDiv = 4ul;CLK_SetPllSource(ClkPllSrcXTAL);CLK_MpllConfig(&stcMpllCfg);/* flash read wait cycle setting */EFM_Unlock();EFM_SetLatency(EFM_LATENCY_5);EFM_Lock();/* Enable MPLL. */CLK_MpllCmd(Enable);/* Wait MPLL ready. */while (Set != CLK_GetFlagStatus(ClkFlagMPLLRdy)){}/* Switch system clock source to MPLL. */CLK_SetSysClkSource(CLKSysSrcMPLL);
}

相关中断回调函数

串口发送空中断,串口发送完成中断
串口接收中断,串口接收错误中断,串口接收超时中断

/*串口接收中断回调函数RX*/
static void Usart4RxIrqCallback(void)
{if (Set == USART_GetStatus(USART_CH, UsartRxNoEmpty)){u16RxData = USART_RecData(USART_CH);//取出数据buffer = u16RxData;USART_FuncCmd(USART_CH, UsartTx, Enable);USART_SendData(USART_CH, buffer);}
}/*串口接收错误中断回调函数RX ERR*/
static void Usart4ErrIrqCallback(void)
{if (Set == USART_GetStatus(USART_CH, UsartFrameErr)) USART_ClearStatus(USART_CH, UsartFrameErr);if (Set == USART_GetStatus(USART_CH, UsartParityErr)) USART_ClearStatus(USART_CH, UsartParityErr);if (Set == USART_GetStatus(USART_CH, UsartOverrunErr)) USART_ClearStatus(USART_CH, UsartOverrunErr);if (Set == USART_GetStatus(USART_CH, UsartRxNoEmpty)) USART_ClearStatus(USART_CH, UsartRxNoEmpty);if (Set == USART_GetStatus(USART_CH, UsartTxComplete)) USART_ClearStatus(USART_CH, UsartTxComplete);if (Set == USART_GetStatus(USART_CH, UsartTxEmpty)) USART_ClearStatus(USART_CH, UsartTxEmpty);if (Set == USART_GetStatus(USART_CH, UsartRxTimeOut)) USART_ClearStatus(USART_CH, UsartRxTimeOut);if (Set == USART_GetStatus(USART_CH, UsartRxMpb)) USART_ClearStatus(USART_CH, UsartRxMpb);
}/*串口接收超时中断回调RX TIMEOUT*/
static void Usart4TimeoutIrqCallback(void)
{TIMER0_Cmd(M4_TMR02, Tim0_ChannelB,Disable);USART_ClearStatus(USART_CH, UsartRxTimeOut);
}/*串口发送中断回调函数TX*/
static void UsartTxIrqCallback(void)
{USART_SendData(USART_CH, u16RxData);USART_FuncCmd(USART_CH, UsartTxEmptyInt, Disable);	USART_FuncCmd(USART_CH, UsartTxCmpltInt, Enable);
}/*串口发送完成中断回调函数TX CAM*/
static void UsartTxCmpltIrqCallback(void)
{USART_FuncCmd(USART_CH,UsartTx,Disable);USART_FuncCmd(USART_CH,UsartTxCmpltInt,Disable);
}

mian函数

static uint8_t u8RxData;int32_t main(void)
{//时钟初始化ClkInit();//串口初始化UART_Init();//定时器0初始化Usart_Timer0_Init();while(1){;}}

三、问题

1.有个坑

USART的波特率需将串口时钟频率降低。

在我的代码里,波特率设置的USART_SetBaudrate的SetUartBaudrate里

 如果只有一个B = u32Baudrate;就会跳过???????

所以我多写了一个B = u32Baudrate;

防止代码在此发生错误

四、结果

这篇关于串口UART模式中断收发数据——华大HC32F460的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/335615

相关文章

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

Redis Cluster模式配置

《RedisCluster模式配置》:本文主要介绍RedisCluster模式配置,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录分片 一、分片的本质与核心价值二、分片实现方案对比 ‌三、分片算法详解1. ‌范围分片(顺序分片)‌2. ‌哈希分片3. ‌虚

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

使用SpringBoot整合Sharding Sphere实现数据脱敏的示例

《使用SpringBoot整合ShardingSphere实现数据脱敏的示例》ApacheShardingSphere数据脱敏模块,通过SQL拦截与改写实现敏感信息加密存储,解决手动处理繁琐及系统改... 目录痛点一:痛点二:脱敏配置Quick Start——Spring 显示配置:1.引入依赖2.创建脱敏

详解如何使用Python构建从数据到文档的自动化工作流

《详解如何使用Python构建从数据到文档的自动化工作流》这篇文章将通过真实工作场景拆解,为大家展示如何用Python构建自动化工作流,让工具代替人力完成这些数字苦力活,感兴趣的小伙伴可以跟随小编一起... 目录一、Excel处理:从数据搬运工到智能分析师二、PDF处理:文档工厂的智能生产线三、邮件自动化:

Python数据分析与可视化的全面指南(从数据清洗到图表呈现)

《Python数据分析与可视化的全面指南(从数据清洗到图表呈现)》Python是数据分析与可视化领域中最受欢迎的编程语言之一,凭借其丰富的库和工具,Python能够帮助我们快速处理、分析数据并生成高质... 目录一、数据采集与初步探索二、数据清洗的七种武器1. 缺失值处理策略2. 异常值检测与修正3. 数据

pandas实现数据concat拼接的示例代码

《pandas实现数据concat拼接的示例代码》pandas.concat用于合并DataFrame或Series,本文主要介绍了pandas实现数据concat拼接的示例代码,具有一定的参考价值,... 目录语法示例:使用pandas.concat合并数据默认的concat:参数axis=0,join=

C#代码实现解析WTGPS和BD数据

《C#代码实现解析WTGPS和BD数据》在现代的导航与定位应用中,准确解析GPS和北斗(BD)等卫星定位数据至关重要,本文将使用C#语言实现解析WTGPS和BD数据,需要的可以了解下... 目录一、代码结构概览1. 核心解析方法2. 位置信息解析3. 经纬度转换方法4. 日期和时间戳解析5. 辅助方法二、L

使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)

《使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)》字体设计和矢量图形处理是编程中一个有趣且实用的领域,通过Python的matplotlib库,我们可以轻松将字体轮廓... 目录背景知识字体轮廓的表示实现步骤1. 安装依赖库2. 准备数据3. 解析路径指令4. 绘制图形关键

RabbitMQ工作模式中的RPC通信模式详解

《RabbitMQ工作模式中的RPC通信模式详解》在RabbitMQ中,RPC模式通过消息队列实现远程调用功能,这篇文章给大家介绍RabbitMQ工作模式之RPC通信模式,感兴趣的朋友一起看看吧... 目录RPC通信模式概述工作流程代码案例引入依赖常量类编写客户端代码编写服务端代码RPC通信模式概述在R