java使用minist手写数据集,用滴滴云Notebook快速上手PyTorch-MINIST手写体

本文主要是介绍java使用minist手写数据集,用滴滴云Notebook快速上手PyTorch-MINIST手写体,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在本教程中,您将学习如何快速使用PyTorch训练一个神经网络学习如何识别手写数字。

本文使用滴滴云Notebook作为开发环境,滴滴云Notebook服务集成了CUDA、CuDNN、Python、TensorFlow、Pytorch、MxNet、Keras等深度学习框架,无需用户自己安装。

Part.1

1,购买Notebook服务

注册滴滴云并实名认证后可购买Notebook服务

注册步骤:

2,进入控制台Notebook页面单击创建Notebook实例按钮

3,选择基础配置:

选择 付费方式:当前仅支持按时长。

选择 可用区:选择靠近您客户的地域,包括广州1、2区。

选择 配置规格:根据需要的CPU、GPU、显卡和内存,选择相关配置。

选择 镜像:提供了Jupyter Notebook镜像和Jupyter Lab镜像,这里选择>jupyter-lab-v1。

设置 系统盘:根据需求选择系统盘的大小,设置范围为80GB - 500GB。

f000edcd08a020b4a6ef258363a9af61.png

4,名称和标签

输入 Notebook名称。

输入 标签键以及键值,单击添加按钮,可添加多个标签。

98f02cfc5acb5b279aabf338babc3bc3.png

5,访问Notebook

进入我的Notebook页面,在操作列单击打开Notebook。

进入Notebook详情页面,单击打开Notebook。

f5ab5db7e988973b2cc87835febef857.png

Part.2

构建MNIST手写体数字识别程序

import matplotlib.pyplot as plt

import numpy as np

import torch

import torch.nn as nn

import torch.nn.functional as F

import torch.optim as optim

import torchvision

from torchvision import datasets, transforms

下载经典的MNIST数据集

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# 训练集Dataloader

train_loader = torch.utils.data.DataLoader(

datasets.MNIST(root='.', train=True, download=True,

transform=transforms.Compose([

transforms.ToTensor(),

transforms.Normalize((0.1307,), (0.3081,))

])), batch_size=64, shuffle=True, num_workers=4)

# 测试集Dataloader

test_loader = torch.utils.data.DataLoader(

datasets.MNIST(root='.', train=False, transform=transforms.Compose([

transforms.ToTensor(),

transforms.Normalize((0.1307,), (0.3081,))

])), batch_size=64, shuffle=True, num_workers=4)

这里我们使用一个4层CNN(卷积神经网络),网络结构:Conv-Conv-FC-FC

class Net(nn.Module):

def __init__(self):

super(Net, self).__init__()

self.conv1 = nn.Conv2d(1, 10, kernel_size=5)

self.conv2 = nn.Conv2d(10, 20, kernel_size=5)

self.fc1 = nn.Linear(320, 50)

self.fc2 = nn.Linear(50, 10)

def forward(self, x):

# Perform the usual forward pass

x = F.relu(F.max_pool2d(self.conv1(x), 2))

x = F.relu(F.max_pool2d(self.conv2(x), 2))

x = x.view(-1, 320)

x = F.relu(self.fc1(x))

x = self.fc2(x)

return F.log_softmax(x, dim=1)

model = Net().to(device)

现在我们使用SGD(随机梯度下降)算法来训练模型,以有监督的方式学习分类任务

optimizer = optim.SGD(model.parameters(), lr=0.01)

def train(epoch):

model.train()

for batch_idx, (data, target) in enumerate(train_loader):

data, target = data.to(device), target.to(device)

optimizer.zero_grad()

output = model(data)

loss = F.nll_loss(output, target)

loss.backward()

optimizer.step()

if batch_idx % 1 == 0:

print('\rTrain Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(

epoch, batch_idx * len(data), len(train_loader.dataset),

100. * batch_idx / len(train_loader), loss.item()), end='')

def test():

with torch.no_grad():

model.eval()

test_loss = 0

correct = 0

for data, target in test_loader:

data, target = data.to(device), target.to(device)

output = model(data)

test_loss += F.nll_loss(output, target).item()

pred = output.max(1, keepdim=True)[1]

correct += pred.eq(target.view_as(pred)).sum().item()

test_loss /= len(test_loader.dataset)

print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'

.format(test_loss, correct, len(test_loader.dataset),

100. * correct / len(test_loader.dataset)))

开始训练,每训练一个epoch测试一次模型,在20个epoch内,模型准确率可以达到98.7%

epochs = 20

for epoch in range(1, epochs + 1):

train(epoch)

test()

Train Epoch: 1 [29984/60000 (100%)]  Loss: 0.130790

Test set: Average loss: 0.0033, Accuracy: 9370/10000 (94%)

Train Epoch: 2 [29984/60000 (100%)]  Loss: 0.212607

Test set: Average loss: 0.0020, Accuracy: 9594/10000 (96%)

Train Epoch: 3 [29984/60000 (100%)]  Loss: 0.054339

Test set: Average loss: 0.0016, Accuracy: 9673/10000 (97%)

Train Epoch: 4 [29984/60000 (100%)]  Loss: 0.085429

Test set: Average loss: 0.0012, Accuracy: 9766/10000 (98%)

Train Epoch: 5 [29984/60000 (100%)]  Loss: 0.084620

Test set: Average loss: 0.0010, Accuracy: 9800/10000 (98%)

Train Epoch: 6 [29984/60000 (100%)]  Loss: 0.053965

Test set: Average loss: 0.0009, Accuracy: 9826/10000 (98%)

Train Epoch: 7 [29984/60000 (100%)]  Loss: 0.098088

Test set: Average loss: 0.0008, Accuracy: 9826/10000 (98%)

Train Epoch: 8 [29184/60000 (49%)]  Loss: 0.008589

滴滴云小程序上线啦!微信搜索“滴滴云助手”快来体验吧!

b171697b107b60e57b2224dfec6f94fd.png

这篇关于java使用minist手写数据集,用滴滴云Notebook快速上手PyTorch-MINIST手写体的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/334696

相关文章

Git可视化管理工具(SourceTree)使用操作大全经典

《Git可视化管理工具(SourceTree)使用操作大全经典》本文详细介绍了SourceTree作为Git可视化管理工具的常用操作,包括连接远程仓库、添加SSH密钥、克隆仓库、设置默认项目目录、代码... 目录前言:连接Gitee or github,获取代码:在SourceTree中添加SSH密钥:Cl

Java NoClassDefFoundError运行时错误分析解决

《JavaNoClassDefFoundError运行时错误分析解决》在Java开发中,NoClassDefFoundError是一种常见的运行时错误,它通常表明Java虚拟机在尝试加载一个类时未能... 目录前言一、问题分析二、报错原因三、解决思路检查类路径配置检查依赖库检查类文件调试类加载器问题四、常见

Java注解之超越Javadoc的元数据利器详解

《Java注解之超越Javadoc的元数据利器详解》本文将深入探讨Java注解的定义、类型、内置注解、自定义注解、保留策略、实际应用场景及最佳实践,无论是初学者还是资深开发者,都能通过本文了解如何利用... 目录什么是注解?注解的类型内置注编程解自定义注解注解的保留策略实际用例最佳实践总结在 Java 编程

Python中模块graphviz使用入门

《Python中模块graphviz使用入门》graphviz是一个用于创建和操作图形的Python库,本文主要介绍了Python中模块graphviz使用入门,具有一定的参考价值,感兴趣的可以了解一... 目录1.安装2. 基本用法2.1 输出图像格式2.2 图像style设置2.3 属性2.4 子图和聚

windows和Linux使用命令行计算文件的MD5值

《windows和Linux使用命令行计算文件的MD5值》在Windows和Linux系统中,您可以使用命令行(终端或命令提示符)来计算文件的MD5值,文章介绍了在Windows和Linux/macO... 目录在Windows上:在linux或MACOS上:总结在Windows上:可以使用certuti

CentOS和Ubuntu系统使用shell脚本创建用户和设置密码

《CentOS和Ubuntu系统使用shell脚本创建用户和设置密码》在Linux系统中,你可以使用useradd命令来创建新用户,使用echo和chpasswd命令来设置密码,本文写了一个shell... 在linux系统中,你可以使用useradd命令来创建新用户,使用echo和chpasswd命令来设

Python使用Matplotlib绘制3D曲面图详解

《Python使用Matplotlib绘制3D曲面图详解》:本文主要介绍Python使用Matplotlib绘制3D曲面图,在Python中,使用Matplotlib库绘制3D曲面图可以通过mpl... 目录准备工作绘制简单的 3D 曲面图绘制 3D 曲面图添加线框和透明度控制图形视角Matplotlib

Pandas中统计汇总可视化函数plot()的使用

《Pandas中统计汇总可视化函数plot()的使用》Pandas提供了许多强大的数据处理和分析功能,其中plot()函数就是其可视化功能的一个重要组成部分,本文主要介绍了Pandas中统计汇总可视化... 目录一、plot()函数简介二、plot()函数的基本用法三、plot()函数的参数详解四、使用pl

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展