java使用minist手写数据集,用滴滴云Notebook快速上手PyTorch-MINIST手写体

本文主要是介绍java使用minist手写数据集,用滴滴云Notebook快速上手PyTorch-MINIST手写体,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在本教程中,您将学习如何快速使用PyTorch训练一个神经网络学习如何识别手写数字。

本文使用滴滴云Notebook作为开发环境,滴滴云Notebook服务集成了CUDA、CuDNN、Python、TensorFlow、Pytorch、MxNet、Keras等深度学习框架,无需用户自己安装。

Part.1

1,购买Notebook服务

注册滴滴云并实名认证后可购买Notebook服务

注册步骤:

2,进入控制台Notebook页面单击创建Notebook实例按钮

3,选择基础配置:

选择 付费方式:当前仅支持按时长。

选择 可用区:选择靠近您客户的地域,包括广州1、2区。

选择 配置规格:根据需要的CPU、GPU、显卡和内存,选择相关配置。

选择 镜像:提供了Jupyter Notebook镜像和Jupyter Lab镜像,这里选择>jupyter-lab-v1。

设置 系统盘:根据需求选择系统盘的大小,设置范围为80GB - 500GB。

f000edcd08a020b4a6ef258363a9af61.png

4,名称和标签

输入 Notebook名称。

输入 标签键以及键值,单击添加按钮,可添加多个标签。

98f02cfc5acb5b279aabf338babc3bc3.png

5,访问Notebook

进入我的Notebook页面,在操作列单击打开Notebook。

进入Notebook详情页面,单击打开Notebook。

f5ab5db7e988973b2cc87835febef857.png

Part.2

构建MNIST手写体数字识别程序

import matplotlib.pyplot as plt

import numpy as np

import torch

import torch.nn as nn

import torch.nn.functional as F

import torch.optim as optim

import torchvision

from torchvision import datasets, transforms

下载经典的MNIST数据集

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# 训练集Dataloader

train_loader = torch.utils.data.DataLoader(

datasets.MNIST(root='.', train=True, download=True,

transform=transforms.Compose([

transforms.ToTensor(),

transforms.Normalize((0.1307,), (0.3081,))

])), batch_size=64, shuffle=True, num_workers=4)

# 测试集Dataloader

test_loader = torch.utils.data.DataLoader(

datasets.MNIST(root='.', train=False, transform=transforms.Compose([

transforms.ToTensor(),

transforms.Normalize((0.1307,), (0.3081,))

])), batch_size=64, shuffle=True, num_workers=4)

这里我们使用一个4层CNN(卷积神经网络),网络结构:Conv-Conv-FC-FC

class Net(nn.Module):

def __init__(self):

super(Net, self).__init__()

self.conv1 = nn.Conv2d(1, 10, kernel_size=5)

self.conv2 = nn.Conv2d(10, 20, kernel_size=5)

self.fc1 = nn.Linear(320, 50)

self.fc2 = nn.Linear(50, 10)

def forward(self, x):

# Perform the usual forward pass

x = F.relu(F.max_pool2d(self.conv1(x), 2))

x = F.relu(F.max_pool2d(self.conv2(x), 2))

x = x.view(-1, 320)

x = F.relu(self.fc1(x))

x = self.fc2(x)

return F.log_softmax(x, dim=1)

model = Net().to(device)

现在我们使用SGD(随机梯度下降)算法来训练模型,以有监督的方式学习分类任务

optimizer = optim.SGD(model.parameters(), lr=0.01)

def train(epoch):

model.train()

for batch_idx, (data, target) in enumerate(train_loader):

data, target = data.to(device), target.to(device)

optimizer.zero_grad()

output = model(data)

loss = F.nll_loss(output, target)

loss.backward()

optimizer.step()

if batch_idx % 1 == 0:

print('\rTrain Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(

epoch, batch_idx * len(data), len(train_loader.dataset),

100. * batch_idx / len(train_loader), loss.item()), end='')

def test():

with torch.no_grad():

model.eval()

test_loss = 0

correct = 0

for data, target in test_loader:

data, target = data.to(device), target.to(device)

output = model(data)

test_loss += F.nll_loss(output, target).item()

pred = output.max(1, keepdim=True)[1]

correct += pred.eq(target.view_as(pred)).sum().item()

test_loss /= len(test_loader.dataset)

print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'

.format(test_loss, correct, len(test_loader.dataset),

100. * correct / len(test_loader.dataset)))

开始训练,每训练一个epoch测试一次模型,在20个epoch内,模型准确率可以达到98.7%

epochs = 20

for epoch in range(1, epochs + 1):

train(epoch)

test()

Train Epoch: 1 [29984/60000 (100%)]  Loss: 0.130790

Test set: Average loss: 0.0033, Accuracy: 9370/10000 (94%)

Train Epoch: 2 [29984/60000 (100%)]  Loss: 0.212607

Test set: Average loss: 0.0020, Accuracy: 9594/10000 (96%)

Train Epoch: 3 [29984/60000 (100%)]  Loss: 0.054339

Test set: Average loss: 0.0016, Accuracy: 9673/10000 (97%)

Train Epoch: 4 [29984/60000 (100%)]  Loss: 0.085429

Test set: Average loss: 0.0012, Accuracy: 9766/10000 (98%)

Train Epoch: 5 [29984/60000 (100%)]  Loss: 0.084620

Test set: Average loss: 0.0010, Accuracy: 9800/10000 (98%)

Train Epoch: 6 [29984/60000 (100%)]  Loss: 0.053965

Test set: Average loss: 0.0009, Accuracy: 9826/10000 (98%)

Train Epoch: 7 [29984/60000 (100%)]  Loss: 0.098088

Test set: Average loss: 0.0008, Accuracy: 9826/10000 (98%)

Train Epoch: 8 [29184/60000 (49%)]  Loss: 0.008589

滴滴云小程序上线啦!微信搜索“滴滴云助手”快来体验吧!

b171697b107b60e57b2224dfec6f94fd.png

这篇关于java使用minist手写数据集,用滴滴云Notebook快速上手PyTorch-MINIST手写体的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/334696

相关文章

java如何解压zip压缩包

《java如何解压zip压缩包》:本文主要介绍java如何解压zip压缩包问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java解压zip压缩包实例代码结果如下总结java解压zip压缩包坐在旁边的小伙伴问我怎么用 java 将服务器上的压缩文件解压出来,

SpringBoot中SM2公钥加密、私钥解密的实现示例详解

《SpringBoot中SM2公钥加密、私钥解密的实现示例详解》本文介绍了如何在SpringBoot项目中实现SM2公钥加密和私钥解密的功能,通过使用Hutool库和BouncyCastle依赖,简化... 目录一、前言1、加密信息(示例)2、加密结果(示例)二、实现代码1、yml文件配置2、创建SM2工具

Spring WebFlux 与 WebClient 使用指南及最佳实践

《SpringWebFlux与WebClient使用指南及最佳实践》WebClient是SpringWebFlux模块提供的非阻塞、响应式HTTP客户端,基于ProjectReactor实现,... 目录Spring WebFlux 与 WebClient 使用指南1. WebClient 概述2. 核心依

Spring Boot @RestControllerAdvice全局异常处理最佳实践

《SpringBoot@RestControllerAdvice全局异常处理最佳实践》本文详解SpringBoot中通过@RestControllerAdvice实现全局异常处理,强调代码复用、统... 目录前言一、为什么要使用全局异常处理?二、核心注解解析1. @RestControllerAdvice2

Spring IoC 容器的使用详解(最新整理)

《SpringIoC容器的使用详解(最新整理)》文章介绍了Spring框架中的应用分层思想与IoC容器原理,通过分层解耦业务逻辑、数据访问等模块,IoC容器利用@Component注解管理Bean... 目录1. 应用分层2. IoC 的介绍3. IoC 容器的使用3.1. bean 的存储3.2. 方法注

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

Python内置函数之classmethod函数使用详解

《Python内置函数之classmethod函数使用详解》:本文主要介绍Python内置函数之classmethod函数使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 类方法定义与基本语法2. 类方法 vs 实例方法 vs 静态方法3. 核心特性与用法(1编程客

Spring事务传播机制最佳实践

《Spring事务传播机制最佳实践》Spring的事务传播机制为我们提供了优雅的解决方案,本文将带您深入理解这一机制,掌握不同场景下的最佳实践,感兴趣的朋友一起看看吧... 目录1. 什么是事务传播行为2. Spring支持的七种事务传播行为2.1 REQUIRED(默认)2.2 SUPPORTS2

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Java进程异常故障定位及排查过程

《Java进程异常故障定位及排查过程》:本文主要介绍Java进程异常故障定位及排查过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、故障发现与初步判断1. 监控系统告警2. 日志初步分析二、核心排查工具与步骤1. 进程状态检查2. CPU 飙升问题3. 内存