java使用minist手写数据集,用滴滴云Notebook快速上手PyTorch-MINIST手写体

本文主要是介绍java使用minist手写数据集,用滴滴云Notebook快速上手PyTorch-MINIST手写体,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在本教程中,您将学习如何快速使用PyTorch训练一个神经网络学习如何识别手写数字。

本文使用滴滴云Notebook作为开发环境,滴滴云Notebook服务集成了CUDA、CuDNN、Python、TensorFlow、Pytorch、MxNet、Keras等深度学习框架,无需用户自己安装。

Part.1

1,购买Notebook服务

注册滴滴云并实名认证后可购买Notebook服务

注册步骤:

2,进入控制台Notebook页面单击创建Notebook实例按钮

3,选择基础配置:

选择 付费方式:当前仅支持按时长。

选择 可用区:选择靠近您客户的地域,包括广州1、2区。

选择 配置规格:根据需要的CPU、GPU、显卡和内存,选择相关配置。

选择 镜像:提供了Jupyter Notebook镜像和Jupyter Lab镜像,这里选择>jupyter-lab-v1。

设置 系统盘:根据需求选择系统盘的大小,设置范围为80GB - 500GB。

f000edcd08a020b4a6ef258363a9af61.png

4,名称和标签

输入 Notebook名称。

输入 标签键以及键值,单击添加按钮,可添加多个标签。

98f02cfc5acb5b279aabf338babc3bc3.png

5,访问Notebook

进入我的Notebook页面,在操作列单击打开Notebook。

进入Notebook详情页面,单击打开Notebook。

f5ab5db7e988973b2cc87835febef857.png

Part.2

构建MNIST手写体数字识别程序

import matplotlib.pyplot as plt

import numpy as np

import torch

import torch.nn as nn

import torch.nn.functional as F

import torch.optim as optim

import torchvision

from torchvision import datasets, transforms

下载经典的MNIST数据集

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# 训练集Dataloader

train_loader = torch.utils.data.DataLoader(

datasets.MNIST(root='.', train=True, download=True,

transform=transforms.Compose([

transforms.ToTensor(),

transforms.Normalize((0.1307,), (0.3081,))

])), batch_size=64, shuffle=True, num_workers=4)

# 测试集Dataloader

test_loader = torch.utils.data.DataLoader(

datasets.MNIST(root='.', train=False, transform=transforms.Compose([

transforms.ToTensor(),

transforms.Normalize((0.1307,), (0.3081,))

])), batch_size=64, shuffle=True, num_workers=4)

这里我们使用一个4层CNN(卷积神经网络),网络结构:Conv-Conv-FC-FC

class Net(nn.Module):

def __init__(self):

super(Net, self).__init__()

self.conv1 = nn.Conv2d(1, 10, kernel_size=5)

self.conv2 = nn.Conv2d(10, 20, kernel_size=5)

self.fc1 = nn.Linear(320, 50)

self.fc2 = nn.Linear(50, 10)

def forward(self, x):

# Perform the usual forward pass

x = F.relu(F.max_pool2d(self.conv1(x), 2))

x = F.relu(F.max_pool2d(self.conv2(x), 2))

x = x.view(-1, 320)

x = F.relu(self.fc1(x))

x = self.fc2(x)

return F.log_softmax(x, dim=1)

model = Net().to(device)

现在我们使用SGD(随机梯度下降)算法来训练模型,以有监督的方式学习分类任务

optimizer = optim.SGD(model.parameters(), lr=0.01)

def train(epoch):

model.train()

for batch_idx, (data, target) in enumerate(train_loader):

data, target = data.to(device), target.to(device)

optimizer.zero_grad()

output = model(data)

loss = F.nll_loss(output, target)

loss.backward()

optimizer.step()

if batch_idx % 1 == 0:

print('\rTrain Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(

epoch, batch_idx * len(data), len(train_loader.dataset),

100. * batch_idx / len(train_loader), loss.item()), end='')

def test():

with torch.no_grad():

model.eval()

test_loss = 0

correct = 0

for data, target in test_loader:

data, target = data.to(device), target.to(device)

output = model(data)

test_loss += F.nll_loss(output, target).item()

pred = output.max(1, keepdim=True)[1]

correct += pred.eq(target.view_as(pred)).sum().item()

test_loss /= len(test_loader.dataset)

print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'

.format(test_loss, correct, len(test_loader.dataset),

100. * correct / len(test_loader.dataset)))

开始训练,每训练一个epoch测试一次模型,在20个epoch内,模型准确率可以达到98.7%

epochs = 20

for epoch in range(1, epochs + 1):

train(epoch)

test()

Train Epoch: 1 [29984/60000 (100%)]  Loss: 0.130790

Test set: Average loss: 0.0033, Accuracy: 9370/10000 (94%)

Train Epoch: 2 [29984/60000 (100%)]  Loss: 0.212607

Test set: Average loss: 0.0020, Accuracy: 9594/10000 (96%)

Train Epoch: 3 [29984/60000 (100%)]  Loss: 0.054339

Test set: Average loss: 0.0016, Accuracy: 9673/10000 (97%)

Train Epoch: 4 [29984/60000 (100%)]  Loss: 0.085429

Test set: Average loss: 0.0012, Accuracy: 9766/10000 (98%)

Train Epoch: 5 [29984/60000 (100%)]  Loss: 0.084620

Test set: Average loss: 0.0010, Accuracy: 9800/10000 (98%)

Train Epoch: 6 [29984/60000 (100%)]  Loss: 0.053965

Test set: Average loss: 0.0009, Accuracy: 9826/10000 (98%)

Train Epoch: 7 [29984/60000 (100%)]  Loss: 0.098088

Test set: Average loss: 0.0008, Accuracy: 9826/10000 (98%)

Train Epoch: 8 [29184/60000 (49%)]  Loss: 0.008589

滴滴云小程序上线啦!微信搜索“滴滴云助手”快来体验吧!

b171697b107b60e57b2224dfec6f94fd.png

这篇关于java使用minist手写数据集,用滴滴云Notebook快速上手PyTorch-MINIST手写体的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/334696

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

Linux join命令的使用及说明

《Linuxjoin命令的使用及说明》`join`命令用于在Linux中按字段将两个文件进行连接,类似于SQL的JOIN,它需要两个文件按用于匹配的字段排序,并且第一个文件的换行符必须是LF,`jo... 目录一. 基本语法二. 数据准备三. 指定文件的连接key四.-a输出指定文件的所有行五.-o指定输出

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Linux jq命令的使用解读

《Linuxjq命令的使用解读》jq是一个强大的命令行工具,用于处理JSON数据,它可以用来查看、过滤、修改、格式化JSON数据,通过使用各种选项和过滤器,可以实现复杂的JSON处理任务... 目录一. 简介二. 选项2.1.2.2-c2.3-r2.4-R三. 字段提取3.1 普通字段3.2 数组字段四.

Linux kill正在执行的后台任务 kill进程组使用详解

《Linuxkill正在执行的后台任务kill进程组使用详解》文章介绍了两个脚本的功能和区别,以及执行这些脚本时遇到的进程管理问题,通过查看进程树、使用`kill`命令和`lsof`命令,分析了子... 目录零. 用到的命令一. 待执行的脚本二. 执行含子进程的脚本,并kill2.1 进程查看2.2 遇到的

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

一篇文章彻底搞懂macOS如何决定java环境

《一篇文章彻底搞懂macOS如何决定java环境》MacOS作为一个功能强大的操作系统,为开发者提供了丰富的开发工具和框架,下面:本文主要介绍macOS如何决定java环境的相关资料,文中通过代码... 目录方法一:使用 which命令方法二:使用 Java_home工具(Apple 官方推荐)那问题来了,

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置