KM算法 详解+模板 出自http://blog.sina.com.cn/s/blog_691ce2b701016reh.html

本文主要是介绍KM算法 详解+模板 出自http://blog.sina.com.cn/s/blog_691ce2b701016reh.html,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

先说KM算法求二分图的最佳匹配思想,再详讲KM的实现。
【KM算法求二分图的最佳匹配思想】

对于具有二部划分( V1, V2 )的加权完全二分图,其中 V1= { x1, x2, x3, ... , xn }, V2= { y1, y2, y3, ... , yn },边< xi, yj >具有权值 Wi,j 。该带权二分图中一个总权值最大的完美匹配,称之为最佳匹配。
 
记 L(x) 表示结点 x 的标记量,如果对于二部图中的任何边<x,y>,都有 L(x)+ L(y)>= Wx,y,我们称 L 为二部图的可行顶标。
设 G(V,E) 为二部图, G'(V,E') 为二部图的子图。如果对于 G' 中的任何边<x,y> 满足, L(x)+ L(y)== Wx,y,我们称 G'(V,E') 为 G(V,E) 的等价子图。
 
定理一:设 L 是二部图 G 的可行顶标。若 L 等价子图 G有完美匹配 M,则 M 是 G 的最佳匹配。
证明:由于 GL 是 G 的等价子图,M 是 GL 的完美匹配,所以,M 也是 G  的完美匹配。以由于对于匹配 M 的每条边 e ,都有 e∈ E( GL ),而且 M 中每条边覆盖每个顶点正好一次,所以
W( M )= å W(e), e∈ M = å L(x), x∈ V
另一方面,对于 G 的任何完美匹配 M' 有
W( M' )= å W(e), e∈ M' <= å L(x), x∈ V
于是 W( M )>= W( M' ),即 M 是 G 的最优匹配。
 
由上述定理,我们可以通过来不断修改可行顶标,得到等价子图,从而求出最佳匹配。
就像匈牙利算法一样,我们依次为每一个顶点 i 寻找增广路径,如果寻找增广路径失败,我们就修改相应的可行顶标,来得到增广路径。
如图:
|  1  2  3  |
|  3  2  4  |
|  2  3  5  |
若要对这个完全二分图求最佳匹配
 
初始化:
Lx(1)= max{ y| w(1,y), 1<= y<= 3 }= max{ 1, 2, 3 }= 3, Ly(1)= 0
Lx(2)= max{ 3, 2, 4 }= 4, Ly(2)= 0
Lx(3)= max{ 2, 3, 5 }= 5, Ly(3)= 0;
我们建立等价子图( 满足 Lx(x)+ Ly(y)== W(x,y) ) 如下:
km算法求二分图最佳匹配
km算法求二分图最佳匹配
对于该图,运用匈牙利算法对 X 部顶点 1 求增广路径,得到一个匹配,如图( 红色代表匹配边 ):
 对 X 部顶点 2 求增广路径失败,寻找增广路径的过程为 X 2-> Y 3-> X 1。我们把寻找增广路径失败的 DFS 的交错树中,在 X 部顶点集称之为 S, 在 Y 部的顶点集称之为 T。则 S= { 1, 2 },T= { 3 }。现在我们就通过修改顶标值来扩大等价子图,如何修改。
 
1)   我们寻找一个 d 值,使得 d= min{ (x,y)| Lx(x)+ Ly(y)- W(x,y), x∈ S, y∉ T },因些,这时 d= min{
Lx(1)+Ly(1)-W(1,1),  Lx(1)+Ly(2)-W(1,2),  Lx(2)+Ly(1)-W(2,1),  Lx(2)+Ly(2)-W(2,2) }=
min{ 3+0- 1, 3+0-2,  4+0-3,  4+0-2 }= min{ 2, 1, 1, 2 }= 1。
寻找最小的 d 是为了保证修改后仍满足性质对于边 <x,y> 有 Lx(x)+ Ly(y)>= W(x,y)。
 
2)   然后对于顶点 x
1. 如果 x∈ S 则 Lx(x)= Lx(x)- d。
2. 如果 x∈ T 则 Ly(x)= Ly(x)+ d。
3. 其它情况保持不变。
如此修改后,我们发现对于边<x,y>,顶标 Lx(x)+ Ly(y) 的值为
1.  Lx(x)- d+ Ly(y)+ d,  x∈ S, y∈ T。
2.  Lx(x)+ Ly(y),  x∉ S,  y∉ T。
3.  Lx(x)- d+ Ly(y), x∈ S, y∉ T。
4.  Lx(x)+ Ly(y)+ d, x∉ S,  y∈ T。
易知,修改后对于任何边仍满足 Lx(x)+ Ly(y)>= W(x,y),并且第三种情况顶标值减少了 d,如此定会使等价子图扩大。
 
就上例而言: 修改后 Lx(1)= 2, Lx(2)= 3, Lx(3)= 5, Ly(1)= 0, Ly(1)= 0, Ly(2)= 0, Ly(3)= 1。
这时 Lx(2)+Ly(1)=3+0=3= W(2,1),在等价子图中增加了一条边,等价子图变为:
 km算法求二分图最佳匹配
如此按以上方法,得到等价子图的完美匹配。
 
另外计算 d 值的时候可以进行一些优化。
定义 slack(y)= min{ (x,y)| Lx(x)+ Ly(y)- W(x,y),x∈ S,  y∉ T }
这样能在寻找增广路径的时候就顺便将 slack 求出。

 

(以上为摘上网络)

【KM算法及其具体过程】
(1)可行点标:每个点有一个标号,记lx[i]为X方点i的标号,ly[j]为Y方点j的标号。如果对于图中的任意边(i, j, W)都有lx[i]+ly[j]>=W,则这一组点标是可行的。特别地,对于lx[i]+ly[j]=W的边(i, j, W),称为可行边
(2)KM 算法的核心思想就是通过修改某些点的标号(但要满足点标始终是可行的),不断增加图中的可行边总数,直到图中存在仅由可行边组成的完全匹配为止,此时这个匹配一定是最佳的(因为由可行点标的的定义,图中的任意一个完全匹配,其边权总和均不大于所有点的标号之和,而仅由可行边组成的完全匹配的边权总和等于所有点的标号之和,故这个匹配是最佳的)。一开始,求出每个点的初始标号:lx[i]=max{e.W|e.x=i}(即每个X方点的初始标号为与这个X方点相关联的权值最大的边的权值),ly[j]=0(即每个Y方点的初始标号为0)。这个初始点标显然是可行的,并且,与任意一个X方点关联的边中至少有一条可行边
(3)然后,从每个X方点开始DFS增广。DFS增广的过程与最大匹配的Hungary算法基本相同,只是要注意两点:一是只找可行边,二是要把搜索过程中遍历到的X方点全部记下来(可以用vst搞一下),以进行后面的修改;
(4)增广的结果有两种:若成功(找到了增广轨),则该点增广完成,进入下一个点的增广。若失败(没有找到增广轨),则需要改变一些点的标号,使得图中可行边的数量增加。方法为:将所有在增广轨中(就是在增广过程中遍历到)的X方点的标号全部减去一个常数d,所有在增广轨中的Y方点的标号全部加上一个常数d,则对于图中的任意一条边(i, j, W)(i为X方点,j为Y方点):
<1>i和j都在增广轨中:此时边(i, j)的(lx[i]+ly[j])值不变,也就是这条边的可行性不变(原来是可行边则现在仍是,原来不是则现在仍不是);
<2>i在增广轨中而j不在:此时边(i, j)的(lx[i]+ly[j])的值减少了d,也就是原来这条边不是可行边(否则j就会被遍历到了),而现在可能是;
<3>j在增广轨中而i不在:此时边(i, j)的(lx[i]+ly[j])的值增加了d,也就是原来这条边不是可行边(若这条边是可行边,则在遍历到j时会紧接着执行DFS(i),此时i就会被遍历到),现在仍不是;
<4>i和j都不在增广轨中:此时边(i, j)的(lx[i]+ly[j])值不变,也就是这条边的可行性不变。
这样,在进行了这一步修改操作后,图中原来的可行边仍可行,而原来不可行的边现在则可能变为可行边。那么d的值应取多少?显然,整个点标不能失去可行性,也就是对于上述的第<2>类边,其lx[i]+ly[j]>=W这一性质不能被改变,故取所有第<2>类边的 (lx[i]+ly[j]-W)的最小值作为d值即可。这样一方面可以保证点标的可行性,另一方面,经过这一步后,图中至少会增加一条可行边。
(5)修改后,继续对这个X方点DFS增广,若还失败则继续修改,直到成功为止;
(6)以上就是KM算法的基本思路。但是朴素的实现方法,时间复杂度为O(n4)——需要找O(n)次增广路,每次增广最多需要修改O(n)次顶标,每次修改顶标时由于要枚举边来求d值,复杂度为O(n2)。实际上KM算法的复杂度是可以做到O(n3)的。我们给每个Y顶点一个“松弛量”函数slack,每次开始找增广路时初始化为无穷大。在寻找增广路的过程中,检查边(i,j)时,如果它不在相等子图中,则让slack[j]变成原值与 A[i]+B[j]-w[i,j]的较小值。这样,在修改顶标时,取所有不在交错树中的Y顶点的slack值中的最小值作为d值即可。但还要注意一点:修改顶标后,要把所有不在交错树中的Y顶点的slack值都减去d。

【求二分图的最小匹配】
只需把权值取反,变为负的,再用KM算出最大权匹配,取反则为其最小权匹配。

#include <stdio.h>
#include <string.h>
#define M 310
#define inf 0x3f3f3f3fint n,nx,ny;
int link[M],lx[M],ly[M],slack[M];    //lx,ly为顶标,nx,ny分别为x点集y点集的个数
int visx[M],visy[M],w[M][M];int DFS(int x)
{visx[x] = 1;for (int y = 1;y <= ny;y ++){if (visy[y])continue;int t = lx[x] + ly[y] - w[x][y];if (t == 0)       //{visy[y] = 1;if (link[y] == -1||DFS(link[y])){link[y] = x;return 1;}}else if (slack[y] > t)  //不在相等子图中slack 取最小的slack[y] = t;}return 0;
}
int KM()
{int i,j;memset (link,-1,sizeof(link));memset (ly,0,sizeof(ly));for (i = 1;i <= nx;i ++)            //lx初始化为与它关联边中最大的for (j = 1,lx[i] = -inf;j <= ny;j ++)if (w[i][j] > lx[i])lx[i] = w[i][j];for (int x = 1;x <= nx;x ++){for (i = 1;i <= ny;i ++)slack[i] = inf;while (1){memset (visx,0,sizeof(visx));memset (visy,0,sizeof(visy));if (DFS(x))     //若成功(找到了增广轨),则该点增广完成,进入下一个点的增广break;  //若失败(没有找到增广轨),则需要改变一些点的标号,使得图中可行边的数量增加。//方法为:将所有在增广轨中(就是在增广过程中遍历到)的X方点的标号全部减去一个常数d,//所有在增广轨中的Y方点的标号全部加上一个常数dint d = inf;for (i = 1;i <= ny;i ++)if (!visy[i]&&d > slack[i])d = slack[i];for (i = 1;i <= nx;i ++)if (visx[i])lx[i] -= d;for (i = 1;i <= ny;i ++)  //修改顶标后,要把所有不在交错树中的Y顶点的slack值都减去dif (visy[i])ly[i] += d;elseslack[i] -= d;}}int res = 0;for (i = 1;i <= ny;i ++)if (link[i] > -1)res += w[link[i]][i];return res;
}
int main ()
{int i,j;while (scanf ("%d",&n)!=EOF){nx = ny = n;//  memset (w,0,sizeof(w));for (i = 1;i <= n;i ++)for (j = 1;j <= n;j ++)scanf ("%d",&w[i][j]);int ans = KM();printf ("%d\n",ans);}return 0;
}



 

 

转载于:https://www.cnblogs.com/vermouth/p/3710193.html

这篇关于KM算法 详解+模板 出自http://blog.sina.com.cn/s/blog_691ce2b701016reh.html的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/332870

相关文章

Java注解之超越Javadoc的元数据利器详解

《Java注解之超越Javadoc的元数据利器详解》本文将深入探讨Java注解的定义、类型、内置注解、自定义注解、保留策略、实际应用场景及最佳实践,无论是初学者还是资深开发者,都能通过本文了解如何利用... 目录什么是注解?注解的类型内置注编程解自定义注解注解的保留策略实际用例最佳实践总结在 Java 编程

MySQL数据库约束深入详解

《MySQL数据库约束深入详解》:本文主要介绍MySQL数据库约束,在MySQL数据库中,约束是用来限制进入表中的数据类型的一种技术,通过使用约束,可以确保数据的准确性、完整性和可靠性,需要的朋友... 目录一、数据库约束的概念二、约束类型三、NOT NULL 非空约束四、DEFAULT 默认值约束五、UN

Python使用Matplotlib绘制3D曲面图详解

《Python使用Matplotlib绘制3D曲面图详解》:本文主要介绍Python使用Matplotlib绘制3D曲面图,在Python中,使用Matplotlib库绘制3D曲面图可以通过mpl... 目录准备工作绘制简单的 3D 曲面图绘制 3D 曲面图添加线框和透明度控制图形视角Matplotlib

MySQL中的分组和多表连接详解

《MySQL中的分组和多表连接详解》:本文主要介绍MySQL中的分组和多表连接的相关操作,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录mysql中的分组和多表连接一、MySQL的分组(group javascriptby )二、多表连接(表连接会产生大量的数据垃圾)MySQL中的

Java 实用工具类Spring 的 AnnotationUtils详解

《Java实用工具类Spring的AnnotationUtils详解》Spring框架提供了一个强大的注解工具类org.springframework.core.annotation.Annot... 目录前言一、AnnotationUtils 的常用方法二、常见应用场景三、与 JDK 原生注解 API 的

redis中使用lua脚本的原理与基本使用详解

《redis中使用lua脚本的原理与基本使用详解》在Redis中使用Lua脚本可以实现原子性操作、减少网络开销以及提高执行效率,下面小编就来和大家详细介绍一下在redis中使用lua脚本的原理... 目录Redis 执行 Lua 脚本的原理基本使用方法使用EVAL命令执行 Lua 脚本使用EVALSHA命令

利用Python打造一个Excel记账模板

《利用Python打造一个Excel记账模板》这篇文章主要为大家详细介绍了如何使用Python打造一个超实用的Excel记账模板,可以帮助大家高效管理财务,迈向财富自由之路,感兴趣的小伙伴快跟随小编一... 目录设置预算百分比超支标红预警记账模板功能介绍基础记账预算管理可视化分析摸鱼时间理财法碎片时间利用财

SpringBoot3.4配置校验新特性的用法详解

《SpringBoot3.4配置校验新特性的用法详解》SpringBoot3.4对配置校验支持进行了全面升级,这篇文章为大家详细介绍了一下它们的具体使用,文中的示例代码讲解详细,感兴趣的小伙伴可以参考... 目录基本用法示例定义配置类配置 application.yml注入使用嵌套对象与集合元素深度校验开发

Python中的Walrus运算符分析示例详解

《Python中的Walrus运算符分析示例详解》Python中的Walrus运算符(:=)是Python3.8引入的一个新特性,允许在表达式中同时赋值和返回值,它的核心作用是减少重复计算,提升代码简... 目录1. 在循环中避免重复计算2. 在条件判断中同时赋值变量3. 在列表推导式或字典推导式中简化逻辑

如何在 Spring Boot 中实现 FreeMarker 模板

《如何在SpringBoot中实现FreeMarker模板》FreeMarker是一种功能强大、轻量级的模板引擎,用于在Java应用中生成动态文本输出(如HTML、XML、邮件内容等),本文... 目录什么是 FreeMarker 模板?在 Spring Boot 中实现 FreeMarker 模板1. 环