本文主要是介绍Flink通过滚动窗口达到滑动窗口目的 节省内存和CPU资源(背压),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
Flink在实时处理滑动窗口数据时, 由于窗口时间长, 滑动较为频繁, 导致算子计算压力过大, 下游算子计算速度抵不上上游数据产生速度, 会出现背压现象.
需求: 统计6小时用户设备共同用户数, 每10min统计一次
公共类
@Data
@AllArgsConstructor
// flatMap转换对象
private static class UserDevice {private final String userId;private final String deviceId;
}@Data
// 用户设备统计结果
// 第一个map存放用户最新设备, 直接put覆盖, 取最新设备
// 第二个map存放设备对应用户, 因为要去重, 所以使用set存放
private static class UserDeviceSummary {private final Map<String, String> userDevices = new HashMap<>(60000); // (uid, did)private final Map<String, Set<String>> deviceUsers = new HashMap<>(60000); // (did, Set<uid>)
}
原算子 滑动窗口
dataStreamSource.flatMap((FlatMapFunction<JSONArray, UserDevice>) (array, collector) -> {try {array.forEach(e -> {JSONObject one = (JSONObject) e;// 只处理opay_show事件 app_name in ('opay', '1')if (one.containsKey("uid") && one.containsKey("did")) {collector.collect(new UserDevice(one.getString("uid"), one.getString("did")));}});} catch (Exception ignored) {}}).returns(TypeInformation.of(new TypeHint<UserDevice>() {})).name("Stream flat map").timeWindowAll(Time.hours(6), Time.minutes(10)) // 滑动窗口.allowedLateness(Time.minutes(1)).process(new ProcessAllWindowFunction<UserDevice, UserDeviceSummary, TimeWindow>() {@Overridepublic void process(ProcessAllWindowFunction<UserDevice, UserDeviceSummary, TimeWindow>.Context context, Iterable<UserDevice> elements, Collector<UserDeviceSummary> out) throws Exception {UserDeviceSummary uds = new UserDeviceSummary();for (UserDevice ud : elements) {try {// 不用线程安全集合, 提升效率 由于并行度为1, 应该不会有并发uds.getUserDevices().put(ud.getUserId(), ud.getDeviceId());if (!uds.getDeviceUsers().containsKey(ud.getDeviceId())) {uds.getDeviceUsers().put(ud.getDeviceId(), new HashSet<>());}uds.getDeviceUsers().get(ud.getDeviceId()).add(ud.getUserId());} catch (Exception ignore) {}}out.collect(uds);}}).name("Process to Map").process(new ProcessFunction<UserDeviceSummary, Map<String, Integer>>() {@Overridepublic void processElement(UserDeviceSummary uds, ProcessFunction<UserDeviceSummary, Map<String, Integer>>.Context ctx, Collector<Map<String, Integer>> out) throws Exception {Map<String, Integer> result = new HashMap<>();for (String uid : uds.getUserDevices().keySet()) {try {int count = uds.getDeviceUsers().get(uds.getUserDevices().get(uid)).size();result.put(uid, count);} catch (Exception e) {System.out.println("Process for sink error: " + e.getMessage());}}out.collect(result);// 清空数据 协助gcuds.getUserDevices().clear();uds.getDeviceUsers().clear();result.clear();}}).name("User device calc").print();
开始运行正常, 随着时间的推移, 数据堆积越来越大, 滑动过程中, 最大会有6h / 10min = 36次并行计算, cpu压力比较大, 并行度只能为1
优化
使用滚动窗口替换滑动窗口, 既节省了内存, 也减少了cpu计算. 每10min滚动一次, 外部使用queue存储, 最大保存36个元素
private static final int SUMMARY_LIST_CAPACITY = 36;
// merge list中36个元素 生成一个新的元素, 输出到下游
private static UserDeviceSummary merge(List<UserDeviceSummary> list) {UserDeviceSummary result = list.get(0);// 此处最好应该添加summary时间, 避免长时间没数据流入导致数据错误int length = Math.min(list.size(), SUMMARY_LIST_CAPACITY);System.out.println("Merge tumbling summary: " + length);for (int i = 1; i < length; i++) {UserDeviceSummary current = list.get(i);result.getUserDevices().putAll(current.getUserDevices());current.getDeviceUsers().forEach((key, value) -> result.getDeviceUsers().merge(key, value, (s1, s2) -> {s1.addAll(s2);return s1;}));}return result;
}
List<UserDeviceSummary> list = new LinkedList<>();dataStreamSource.flatMap((FlatMapFunction<JSONArray, UserDevice>) (array, collector) -> {try {array.forEach(e -> {JSONObject one = (JSONObject) e;// 只处理opay_show事件 app_name in ('opay', '1')if (one.containsKey("uid") && one.containsKey("did")) {collector.collect(new UserDevice(one.getString("uid"), one.getString("did")));}});} catch (Exception ignored) {}}).returns(TypeInformation.of(new TypeHint<UserDevice>() {})).name("Stream flat map").timeWindowAll(Time.minutes(10)) // 使用滚动窗口代替滑动窗口, 节省资源.process(new ProcessAllWindowFunction<UserDevice, UserDeviceSummary, TimeWindow>() {@Overridepublic void process(ProcessAllWindowFunction<UserDevice, UserDeviceSummary, TimeWindow>.Context context, Iterable<UserDevice> elements, Collector<UserDeviceSummary> out) throws Exception {UserDeviceSummary uds = new UserDeviceSummary();for (UserDevice ud : elements) {try {// 不用线程安全集合, 提升效率uds.getUserDevices().put(ud.getUserId(), ud.getDeviceId());if (!uds.getDeviceUsers().containsKey(ud.getDeviceId())) {uds.getDeviceUsers().put(ud.getDeviceId(), new HashSet<>());}uds.getDeviceUsers().get(ud.getDeviceId()).add(ud.getUserId());} catch (Exception ignore) {}}list.add(uds);if (list.size() > SUMMARY_LIST_CAPACITY) {list.remove(0);}out.collect(merge(list));}}).name("Process to Map").process(new ProcessFunction<UserDeviceSummary, Map<String, Integer>>() {@Overridepublic void processElement(UserDeviceSummary uds, ProcessFunction<UserDeviceSummary, Map<String, Integer>>.Context ctx, Collector<Map<String, Integer>> out) throws Exception {Map<String, Integer> result = new HashMap<>();for (String uid : uds.getUserDevices().keySet()) {try {int count = uds.getDeviceUsers().get(uds.getUserDevices().get(uid)).size();result.put(uid, count);} catch (Exception e) {System.out.println("Process for sink error: " + e.getMessage());}}out.collect(result);uds.getUserDevices().clear();uds.getDeviceUsers().clear();result.clear();}}).name("User device calc").print();
再次部署, 服务运行正常!
这篇关于Flink通过滚动窗口达到滑动窗口目的 节省内存和CPU资源(背压)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!