绝缘检测原理和绝缘电阻计算方法

2023-11-02 07:04

本文主要是介绍绝缘检测原理和绝缘电阻计算方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 简介
  • 绝缘检测功能
  • 绝缘检测原理
  • 绝缘电阻检测的常用方法
    • 不平衡电桥法
  • 绝缘电阻
    • 绝缘电阻的计算
  • 绝缘检测开启或关闭
  • 为什么根据 V1 < V2 或 V1 ≥ V2 判断是上桥臂并入电阻还是下桥臂并入电阻

简介

绝缘检测是判断动力(正、负)总线与外壳“地”是否存在连接

一些意外情况会发生绝缘故障,比如高压插件老化、积灰、进水、动力走线不合理因(车辆运行)震动摩擦发生破皮

绝缘故障其实就是“电阻”从动力线回路异常“搭”到了不该“搭”到的地方(比如PACK包、车架)

在这里插入图片描述

绝缘检测功能

简单来说,绝缘检测就是检测电池包是否漏电

绝缘检测原理

理想状态下,电池包的高压+ 和 高压- 对 车身地的绝缘阻值应该 ∞

Rn、Rp只要有一方阻值足够大,车身地与电池不形成导电回路,那么它们之间就是绝缘的。只有当Rn、Rp绝缘阻值同时降到一定值,高压电池回路对车身地形成漏电回路,才会造成短路的情况。
在这里插入图片描述

绝缘电阻检测的常用方法

不平衡电桥法

在每一侧增加了一路开关和一个电阻,通过交替切换两侧的开关改变两极对地的等效电阻,得到正、负极检测电阻上不平衡的检测电压,从而计算出正负极的绝缘电阻,正负极检测电阻上的电压随着开关切换周期变化,当某一极绝缘电阻变低时该侧检测电阻电压变小,对应另一侧检测电阻的电压变大。

优点是能准确的检测正负极的绝缘电阻,缺点是切换开关后电路需要等待一段时间达到稳态,相对来说检测时间长。

绝缘电阻

绝缘检测的目的就是计算绝缘电阻,当绝缘电阻低于某个阈值,则很可能会造成电池短路、漏电,威胁人员安全

RpRn 在数学上就是两个未知数
求绝缘电阻就是去求解这两个未知数
因此问题就变成了用电路知识去构建包含Rp Rn 的二元一次方程

在这里插入图片描述

绝缘电阻的计算

以下面绝缘检测方案为例:
他
绝缘检测前:K1 K2 K3 全部断开

步骤一:闭合 K1,开始绝缘检测,整体电路如下所示
在这里插入图片描述
V p + :代表电池总压 V 1 :代表上桥臂电压,即 R 5 或 R p 两端电压 V 2 :代表下桥臂电压,即( R 6 + R 7 )两端电压或 R n 两端电压 V A I N 0 :代表 R 2 两端电压,从而推导出 V p + V A I N 1 :代表 R 7 两端电压,从而推导出 V 2 \begin{aligned} & V_{p+} :代表电池总压 \\ & V_{1} :代表上桥臂电压,即 R_{5} 或 R_{p} 两端电压 \\ & V_{2} :代表下桥臂电压,即 (R_{6} + R_{7} )两端电压 或 R_{n} 两端电压 \\ & V_{AIN0} :代表R_{2} 两端电压,从而推导出 V_{p+} \\ & V_{AIN1} :代表R_{7} 两端电压,从而推导出 V_{2} \\ \end{aligned} Vp+:代表电池总压V1:代表上桥臂电压,即R5Rp两端电压V2:代表下桥臂电压,即(R6+R7)两端电压或Rn两端电压VAIN0:代表R2两端电压,从而推导出Vp+VAIN1:代表R7两端电压,从而推导出V2
根据已知条件列出公式:
V p + = V A I N 0 ∗ R 1 + R 2 R 2 ⟸ V p + = V A I N 0 + V A I N 0 R 2 ∗ R 1 V 2 = V A I N 1 ∗ R 6 + R 7 R 7 ⟸ V p + = V A I N 1 + V A I N 1 R 7 ∗ R 6 V 1 = V p + − V 2 由基尔霍夫电流定理( K C L )得 V 1 R 5 + V 1 R p = V A I N 1 R 7 + V 2 R n \begin{aligned} & V_{p+} = V_{AIN0} * \frac{ R_{1} + R_{2} }{R_{2}} \Longleftarrow V_{p+} = V_{AIN0} + \frac{ V_{AIN0}}{R_{2}}*R_{1} \\ & V_{2} = V_{AIN1} * \frac{ R_{6} + R_{7} }{R_{7}} \Longleftarrow V_{p+} = V_{AIN1} + \frac{ V_{AIN1}}{R_{7}}*R_{6} \\ & V_{1} = V_{p+} - V_{2} \\ & 由基尔霍夫电流定理(KCL)得 \\ \\ & \frac{ V_{1} }{R_{5}} + \frac{ V_{1} }{R_{p}} = \frac{ V_{AIN1} }{R_{7}} + \frac{ V_{2} }{R_{n}} \end{aligned} Vp+=VAIN0R2R1+R2Vp+=VAIN0+R2VAIN0R1V2=VAIN1R7R6+R7Vp+=VAIN1+R7VAIN1R6V1=Vp+V2由基尔霍夫电流定理(KCL)得R5V1+RpV1=R7VAIN1+RnV2

第二步V1'V2' 的采集与 Rn Rp 电阻的计算

国标中第一次检测出上下桥臂电压后,判断两个电压的大小,来决定第二次并入电阻的位置,即哪个位置电压大,第二次就在这个位置处并入已知电阻

  1. V1 ≥ V2 ,闭合 K2,接入 PACK+ 侧辅助电阻 R3,重新测得高压地到低压地为 V2'PACK+到高压地电压 Vp+'
    在这里插入图片描述
    根据已知条件列出公式:
    V p + ′ = V A I N 0 ′ ∗ R 1 + R 2 R 2 ⟸ V p + ′ = V A I N 0 ′ + V A I N 0 ′ R 2 ∗ R 1 V 2 ′ = V A I N 1 ′ ∗ R 6 + R 7 R 7 ⟸ V p + ′ = V A I N 1 ′ + V A I N 1 ′ R 7 ∗ R 6 V 1 ′ = V p + ′ − V 2 ′ 由基尔霍夫电流定理( K C L )得 V 1 ′ R 3 + V 1 ′ R 5 + V 1 ′ R p = V A I N 1 ′ R 7 + V 2 ′ R n \begin{aligned} & V_{p+}' = V'_{AIN0} * \frac{ R_{1} + R_{2} }{R_{2}} \Longleftarrow V_{p+}' = V_{AIN0}' + \frac{ V_{AIN0}'}{R_{2}}*R_{1} \\ & V_{2}' = V_{AIN1}' * \frac{ R_{6} + R_{7} }{R_{7}} \Longleftarrow V_{p+}' = V_{AIN1}' + \frac{ V_{AIN1}'}{R_{7}}*R_{6} \\ & V_{1}' = V_{p+}' - V_{2}' \\ & 由基尔霍夫电流定理(KCL)得 \\ \\ & \frac{ V_{1}' }{R_{3}} + \frac{ V_{1}' }{R_{5}} + \frac{ V_{1}' }{R_{p}} = \frac{ V_{AIN1}' }{R_{7}} + \frac{ V_{2}' }{R_{n}} \end{aligned} Vp+=VAIN0R2R1+R2Vp+=VAIN0+R2VAIN0R1V2=VAIN1R7R6+R7Vp+=VAIN1+R7VAIN1R6V1=Vp+V2由基尔霍夫电流定理(KCL)得R3V1+R5V1+RpV1=R7VAIN1+RnV2
    联立方程:
    { V 1 R 5 + V 1 R p = V A I N 1 R 7 + V 2 R n V 1 ′ R 3 + V 1 ′ R 5 + V 1 ′ R p = V A I N 1 ′ R 7 + V 2 ′ R n \begin{aligned} \begin{cases} \frac{ V_{1} }{R_{5}} + \frac{ V_{1} }{R_{p}} = \frac{ V_{AIN1} }{R_{7}} + \frac{ V_{2} }{R_{n}}\\ \frac{ V_{1}' }{R_{3}} + \frac{ V_{1}' }{R_{5}} + \frac{ V_{1}' }{R_{p}} = \frac{ V_{AIN1}' }{R_{7}} + \frac{ V_{2}' }{R_{n}}\\ \end{cases} \end{aligned} {R5V1+RpV1=R7VAIN1+RnV2R3V1+R5V1+RpV1=R7VAIN1+RnV2
    两个未知数,两个方程,求出 Rp Rn

  2. V1 < V2 ,闭合K3,接入 PACK+ 侧辅助电阻 R4,重新测得高压地到低压地为 V2'PACK+到高压地电压 Vp+'
    在这里插入图片描述
    根据已知条件列出公式:
    V p + ′ = V A I N 0 ′ ∗ R 1 + R 2 R 2 ⟸ V p + ′ = V A I N 0 ′ + V A I N 0 ′ R 2 ∗ R 1 V 2 ′ = V A I N 1 ′ ∗ R 6 + R 7 R 7 ⟸ V p + ′ = V A I N 1 ′ + V A I N 1 ′ R 7 ∗ R 6 V 1 ′ = V p + ′ − V 2 ′ 由基尔霍夫电流定理( K C L )得 V 1 ′ R 5 + V 1 ′ R p = V A I N 1 ′ R 7 + V 2 ′ R n + V 2 ′ R 4 \begin{aligned} & V_{p+}' = V'_{AIN0} * \frac{ R_{1} + R_{2} }{R_{2}} \Longleftarrow V_{p+}' = V_{AIN0}' + \frac{ V_{AIN0}'}{R_{2}}*R_{1} \\ & V_{2}' = V_{AIN1}' * \frac{ R_{6} + R_{7} }{R_{7}} \Longleftarrow V_{p+}' = V_{AIN1}' + \frac{ V_{AIN1}'}{R_{7}}*R_{6} \\ & V_{1}' = V_{p+}' - V_{2}' \\ & 由基尔霍夫电流定理(KCL)得 \\ \\ & \frac{ V_{1}' }{R_{5}} + \frac{ V_{1}' }{R_{p}} = \frac{ V_{AIN1}' }{R_{7}} + \frac{ V_{2}' }{R_{n}} + \frac{ V_{2}' }{R_{4}} \end{aligned} Vp+=VAIN0R2R1+R2Vp+=VAIN0+R2VAIN0R1V2=VAIN1R7R6+R7Vp+=VAIN1+R7VAIN1R6V1=Vp+V2由基尔霍夫电流定理(KCL)得R5V1+RpV1=R7VAIN1+RnV2+R4V2
    联立方程:
    { V 1 R 5 + V 1 R p = V A I N 1 R 7 + V 2 R n V 1 ′ R 5 + V 1 ′ R p = V A I N 1 ′ R 7 + V 2 ′ R n + V 2 ′ R 4 \begin{aligned} \begin{cases} \frac{ V_{1} }{R_{5}} + \frac{ V_{1} }{R_{p}} = \frac{ V_{AIN1} }{R_{7}} + \frac{ V_{2} }{R_{n}}\\ \frac{ V_{1}' }{R_{5}} + \frac{ V_{1}' }{R_{p}} = \frac{ V_{AIN1}' }{R_{7}} + \frac{ V_{2}' }{R_{n}} + \frac{ V_{2}' }{R_{4}}\\ \end{cases} \end{aligned} {R5V1+RpV1=R7VAIN1+RnV2R5V1+RpV1=R7VAIN1+RnV2+R4V2
    两个未知数,两个方程,求出 Rp Rn

绝缘检测开启或关闭

  1. 发生热失控和碰撞故障时,关闭绝缘

    发生热失控时,一般代表电池包要燃烧起来,此时检测无效,甚至导致进一步恶化

  2. 开始充电时,关闭绝缘检测

    充电时,充电桩会检测绝缘

为什么根据 V1 < V2 或 V1 ≥ V2 判断是上桥臂并入电阻还是下桥臂并入电阻

这样做不会让小的绝缘电阻继续降低

桥臂分担的电压越小,表示其并联阻值越小,如果继续在这边并联电阻,会导致并联后的阻值更小,计算出来的 绝缘阻值精度就越差

这篇关于绝缘检测原理和绝缘电阻计算方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/328944

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Redis中Hash从使用过程到原理说明

《Redis中Hash从使用过程到原理说明》RedisHash结构用于存储字段-值对,适合对象数据,支持HSET、HGET等命令,采用ziplist或hashtable编码,通过渐进式rehash优化... 目录一、开篇:Hash就像超市的货架二、Hash的基本使用1. 常用命令示例2. Java操作示例三

Redis中Set结构使用过程与原理说明

《Redis中Set结构使用过程与原理说明》本文解析了RedisSet数据结构,涵盖其基本操作(如添加、查找)、集合运算(交并差)、底层实现(intset与hashtable自动切换机制)、典型应用场... 目录开篇:从购物车到Redis Set一、Redis Set的基本操作1.1 编程常用命令1.2 集

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

java程序远程debug原理与配置全过程

《java程序远程debug原理与配置全过程》文章介绍了Java远程调试的JPDA体系,包含JVMTI监控JVM、JDWP传输调试命令、JDI提供调试接口,通过-Xdebug、-Xrunjdwp参数配... 目录背景组成模块间联系IBM对三个模块的详细介绍编程使用总结背景日常工作中,每个程序员都会遇到bu

Python中isinstance()函数原理解释及详细用法示例

《Python中isinstance()函数原理解释及详细用法示例》isinstance()是Python内置的一个非常有用的函数,用于检查一个对象是否属于指定的类型或类型元组中的某一个类型,它是Py... 目录python中isinstance()函数原理解释及详细用法指南一、isinstance()函数

C#自动化实现检测并删除PDF文件中的空白页面

《C#自动化实现检测并删除PDF文件中的空白页面》PDF文档在日常工作和生活中扮演着重要的角色,本文将深入探讨如何使用C#编程语言,结合强大的PDF处理库,自动化地检测并删除PDF文件中的空白页面,感... 目录理解PDF空白页的定义与挑战引入Spire.PDF for .NET库核心实现:检测并删除空白页