基于蜜獾算法的函数寻优算法

2023-11-02 06:10
文章标签 算法 函数 寻优

本文主要是介绍基于蜜獾算法的函数寻优算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、理论基础
    • 1、蜜獾算法
      • 1.1 初始化阶段
      • 1.2 定义强度 I I I
      • 1.3 更新密度因子
      • 1.4 跳出局部最优
      • 1.5 更新个体位置
        • 1.5.1 挖掘阶段
        • 1.5.2 采蜜阶段
    • 2、算法伪代码
  • 二、仿真实验与分析
  • 三、参考文献

一、理论基础

蜜獾算法(HBA)模拟了蜜獾的觅食行为。为了找到食物源,蜜獾要么嗅、挖,要么跟随蜜獾。第一种行为为挖掘模式,而第二种行为为采蜜模式。在挖掘模式中,它利用自己的嗅觉来确定猎物的大致位置;当到达那里时,它会绕着猎物移动,以选择合适的位置来挖掘和捕捉猎物。在采蜜模式中,蜜獾利用引导獾的位置直接定位蜂巢。

1、蜜獾算法

1.1 初始化阶段

根据式(1)初始化蜜獾的数量(种群规模)和个体的位置: x i = l b i + r 1 × ( u b i − l b i ) (1) x_i=lb_i+r_1×(ub_i-lb_i)\tag{1} xi=lbi+r1×(ubilbi)(1)其中, r 1 r_1 r1 ( 0 , 1 ) (0,1) (0,1)内的随机数; x i x_i xi N N N个候选个体的第 i i i个个体的位置; l b i lb_i lbi u b i ub_i ubi分别为搜索空间的下界和上界。

1.2 定义强度 I I I

强度和猎物的集中力以及和蜜獾之间的距离有关。 I i I_i Ii是猎物的气味强度;如果气味高,则运动速度快,反之亦然。如式(2)计算所示: I i = r 2 × S 4 π d i 2 S = ( x i − x i + 1 ) 2 d i = x p r e y − x i (2) \begin{aligned}&I_i=r_2×\frac{S}{4\pi d_i^2}\\&S=(x_i-x_{i+1})^2\\&d_i=x_{prey}-x_i\end{aligned}\tag{2} Ii=r2×4πdi2SS=(xixi+1)2di=xpreyxi(2)其中, S S S是源强度或集中强度; d i d_i di表示猎物与当前蜜獾个体的距离。

1.3 更新密度因子

密度因子 α \alpha α控制时变随机化,以确保从勘探到开采的平稳过渡。使用式(3)更新随迭代次数减少的递减因子 α \alpha α,以随时间减少随机化。 α = C × exp ⁡ ( − t t max ⁡ ) (3) \alpha=C×\exp\left(\frac{-t}{t_{\max}}\right)\tag{3} α=C×exp(tmaxt)(3)其中, t max ⁡ t_{\max} tmax为最大迭代次数; C C C是一个大于等于1的常数(默认为2)。

1.4 跳出局部最优

这一步和接下来的两步用于跳出局部最优区域。在这种情况下,所提出的算法使用了一个改变搜索方向的标志 F F F,以利用大量机会让搜索个体严格扫描搜索空间。

1.5 更新个体位置

如前所述,HBA位置更新过程( x n e w x_{new} xnew)分为两个部分,即“挖掘阶段”和“采蜜阶段”。下面给出解释:

1.5.1 挖掘阶段

在挖掘阶段,蜜獾执行类似于心脏线形状的动作。心形运动可通过式(4)进行模拟: x n e w = x p r e y + F × β × I × x p r e y + F × r 3 × α × d i × ∣ cos ⁡ ( 2 π r 4 ) × [ 1 − cos ⁡ ( 2 π r 5 ) ] ∣ (4) x_{new}=x_{prey}+F×\beta×I×x_{prey}+F×r_3×\alpha×d_i×|\cos(2\pi r_4)×[1-\cos(2\pi r_5)]|\tag{4} xnew=xprey+F×β×I×xprey+F×r3×α×di×cos(2πr4)×[1cos(2πr5)](4)其中, x p r e y x_{prey} xprey是到目前为止全局最优位置; β ≥ 1 \beta≥1 β1(默认为6)是蜜獾获取食物的能力; d i d_i di为猎物与当前蜜獾个体的距离,见式(2); r 3 r_3 r3 r 4 r_4 r4 r 5 r_5 r5 ( 0 , 1 ) (0,1) (0,1)之间的三个不同的随机数; F F F为改变搜索方向的标志,使用式(5)确定: F = { 1 if r 6 ≤ 0.5 − 1 else (5) F=\begin{dcases}1\quad\,\,\,\,\, \text{if}\,\, r_6≤0.5\\-1\quad\text{else}\end{dcases}\tag{5} F={1ifr60.51else(5)在挖掘阶段,蜜獾严重依赖于猎物的气味强度、与猎物之间的距离以及时变搜索影响因子 α \alpha α。此外,在挖掘活动中,獾可能会受到任何干扰,从而使其无法找到更好的猎物位置。

1.5.2 采蜜阶段

蜂蜜獾跟随蜂蜜向导獾到达蜂巢的情况可模拟为式(6): x n e w = x p r e y + F × r 7 × α × d i (6) x_{new}=x_{prey}+F×r_7×\alpha×d_i\tag{6} xnew=xprey+F×r7×α×di(6)其中, x n e w x_{new} xnew为更新后的蜜獾个体位置; x p r e y x_{prey} xprey为猎物位置; F F F α \alpha α分别由式(5)和式(3)确定; r 7 r_7 r7 ( 0 , 1 ) (0,1) (0,1)之间的随机数。从式(6)可以观察到,根据距离信息 d i d_i di,蜜獾在猎物位置 x p r e y x_{prey} xprey附近进行搜索。在这一阶段,搜索受到随迭代变化的搜索行为 α \alpha α的影响。此外,一只蜜獾可能会受到 F F F干扰。

2、算法伪代码

HBA算法伪代码如图1所示。在这里插入图片描述

图1 HBA算法伪代码

二、仿真实验与分析

以常用23个测试函数中的F1、F2(单峰函数/30维)、F9、F10(多峰函数/30维)、F16、F17(固定维度的多峰函数/2维)为例,将HBA算法分别与花授粉算法(FPA)、鲸鱼优化算法(WOA)、飞蛾火焰优化算法(MFO)、正弦余弦算法(SCA)以及灰狼优化算法(GWO)进行对比,设置种群规模为30,最大迭代次数为1000,每个算法独立运行30次。
结果显示如下:
在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述

函数:F1
FPA:最差值: 0.45312,最优值:0.059663,平均值:0.1572,标准差:0.078226
WOA:最差值: 3.8468e-153,最优值:1.787e-166,平均值:1.586e-154,标准差:7.0824e-154
MFO:最差值: 20000,最优值:2.7671e-05,平均值:2000.0023,标准差:4842.341
SCA:最差值: 0.083351,最优值:6.3116e-09,平均值:0.0063474,标准差:0.015506
GWO:最差值: 1.1638e-57,最优值:1.9593e-62,平均值:6.8682e-59,标准差:2.1017e-58
HBA:最差值: 4.9384e-276,最优值:1.0454e-286,平均值:2.4754e-277,标准差:0
函数:F2
FPA:最差值: 1.1249,最优值:0.2083,平均值:0.50268,标准差:0.18398
WOA:最差值: 2.6492e-103,最优值:1.9096e-112,平均值:1.0355e-104,标准差:4.8313e-104
MFO:最差值: 90,最优值:0.00069882,平均值:37.3337,标准差:23.9151
SCA:最差值: 0.002434,最优值:3.5521e-08,平均值:9.9781e-05,标准差:0.00044213
GWO:最差值: 3.9706e-34,最优值:2.1175e-35,平均值:1.1445e-34,标准差:1.0969e-34
HBA:最差值: 2.715e-142,最优值:4.052e-151,平均值:9.0628e-144,标准差:4.9566e-143
函数:F9
FPA:最差值: 139.1564,最优值:91.7519,平均值:115.611,标准差:11.7281
WOA:最差值: 0,最优值:0,平均值:0,标准差:0
MFO:最差值: 236.1595,最优值:85.5661,平均值:162.5257,标准差:35.7019
SCA:最差值: 128.5608,最优值:4.0412e-05,平均值:26.6363,标准差:35.3467
GWO:最差值: 6.3307,最优值:0,平均值:0.4363,标准差:1.4463
HBA:最差值: 0,最优值:0,平均值:0,标准差:0
函数:F10
FPA:最差值: 13.6963,最优值:0.36228,平均值:5.4049,标准差:3.7088
WOA:最差值: 7.9936e-15,最优值:8.8818e-16,平均值:3.7303e-15,标准差:1.9571e-15
MFO:最差值: 19.964,最优值:1.5018,平均值:16.9922,标准差:5.3634
SCA:最差值: 20.3051,最优值:0.00051109,平均值:17.0372,标准差:6.5228
GWO:最差值: 2.2204e-14,最优值:1.1546e-14,平均值:1.6165e-14,标准差:2.9724e-15
HBA:最差值: 19.9418,最优值:8.8818e-16,平均值:0.66473,标准差:3.6409
函数:F16
FPA:最差值: -1.0316,最优值:-1.0316,平均值:-1.0316,标准差:6.2532e-16
WOA:最差值: -1.0316,最优值:-1.0316,平均值:-1.0316,标准差:1.7865e-11
MFO:最差值: -1.0316,最优值:-1.0316,平均值:-1.0316,标准差:6.7752e-16
SCA:最差值: -1.0316,最优值:-1.0316,平均值:-1.0316,标准差:1.9964e-05
GWO:最差值: -1.0316,最优值:-1.0316,平均值:-1.0316,标准差:6.8281e-09
HBA:最差值: -1.0316,最优值:-1.0316,平均值:-1.0316,标准差:6.2532e-16
函数:F17
FPA:最差值: 0.39789,最优值:0.39789,平均值:0.39789,标准差:0
WOA:最差值: 0.3979,最优值:0.39789,平均值:0.39789,标准差:2.0598e-06
MFO:最差值: 0.39789,最优值:0.39789,平均值:0.39789,标准差:0
SCA:最差值: 0.40065,最优值:0.39791,平均值:0.39864,标准差:0.00065531
GWO:最差值: 0.39789,最优值:0.39789,平均值:0.39789,标准差:1.9543e-07
HBA:最差值: 0.39789,最优值:0.39789,平均值:0.39789,标准差:0

结果表明,HBA算法具有更快的收敛速度、更高的收敛精度以及更好的寻优能力。

三、参考文献

[1] Fatma A. Hashim, Essam H. Houssein, Kashif Hussain, et al. Honey Badger Algorithm: New metaheuristic algorithm for solving optimization problems[J]. Mathematics and Computers in Simulation, 2021: 84-110.

这篇关于基于蜜獾算法的函数寻优算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/328651

相关文章

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

Python中isinstance()函数原理解释及详细用法示例

《Python中isinstance()函数原理解释及详细用法示例》isinstance()是Python内置的一个非常有用的函数,用于检查一个对象是否属于指定的类型或类型元组中的某一个类型,它是Py... 目录python中isinstance()函数原理解释及详细用法指南一、isinstance()函数

python中的高阶函数示例详解

《python中的高阶函数示例详解》在Python中,高阶函数是指接受函数作为参数或返回函数作为结果的函数,下面:本文主要介绍python中高阶函数的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录1.定义2.map函数3.filter函数4.reduce函数5.sorted函数6.自定义高阶函数

Python中的sort方法、sorted函数与lambda表达式及用法详解

《Python中的sort方法、sorted函数与lambda表达式及用法详解》文章对比了Python中list.sort()与sorted()函数的区别,指出sort()原地排序返回None,sor... 目录1. sort()方法1.1 sort()方法1.2 基本语法和参数A. reverse参数B.

Python函数的基本用法、返回值特性、全局变量修改及异常处理技巧

《Python函数的基本用法、返回值特性、全局变量修改及异常处理技巧》本文将通过实际代码示例,深入讲解Python函数的基本用法、返回值特性、全局变量修改以及异常处理技巧,感兴趣的朋友跟随小编一起看看... 目录一、python函数定义与调用1.1 基本函数定义1.2 函数调用二、函数返回值详解2.1 有返

Python Excel 通用筛选函数的实现

《PythonExcel通用筛选函数的实现》本文主要介绍了PythonExcel通用筛选函数的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着... 目录案例目的示例数据假定数据来源是字典优化:通用CSV数据处理函数使用说明使用示例注意事项案例目的第一

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

GO语言中函数命名返回值的使用

《GO语言中函数命名返回值的使用》在Go语言中,函数可以为其返回值指定名称,这被称为命名返回值或命名返回参数,这种特性可以使代码更清晰,特别是在返回多个值时,感兴趣的可以了解一下... 目录基本语法函数命名返回特点代码示例命名特点基本语法func functionName(parameters) (nam

Python Counter 函数使用案例

《PythonCounter函数使用案例》Counter是collections模块中的一个类,专门用于对可迭代对象中的元素进行计数,接下来通过本文给大家介绍PythonCounter函数使用案例... 目录一、Counter函数概述二、基本使用案例(一)列表元素计数(二)字符串字符计数(三)元组计数三、C