深度学习用于疾病诊断-第一课第三周5-6节-数据增强以及dice损失函数

本文主要是介绍深度学习用于疾病诊断-第一课第三周5-6节-数据增强以及dice损失函数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

既然我们已经讨论了分割体系结构,那么让我们来讨论一种可以应用于这种模型训练的技术,即数据扩充(数据增强 data augumentation)。

我们在前面学过,我们可以对输入胸部X光片的变换,这样每个例子的分类标签都是一样的。

现在让我们看看如何将相同的原则应用于分割,但有几个关键的区别。

分割过程中数据扩充的一个关键区别是我们把图像旋转了,同时标签也得跟着转,保证对齐。

所以当我们将输入图像旋转90度以产生变换后的输入。我们还需要将标签旋转90度以获得变换后的标签。

第二个区别是,我们现在有了三维体积,而不是二维图像。所以这些变换必须应用于整个三维体。

有了这个,我们几乎拥有了训练我们的脑肿瘤分割模型所需的所有部件。

最后我们要看的是损失函数。

让我们举一个非常简单的例子。实际上,我们会有一个更高分辨率的图像,我们会看到一个三维的体积。

但是我们这里简单的二维例子可以让我们快速的理解。

这里P表示分割模型在9个像素上的输出。在每个位置,我们都有肿瘤的预测概率。

G指定每个像素位置上ground truth(gt)。9个像素中有3个是肿瘤,表示为1,其余6个是正常脑组织,表示为0。

表格的每一行是一个单元位置,以及它们对应的预测值和gt。

例如,这里的i4指定概率输出为0.8,gt为0。在这个表中表示p和g将使我们更清楚地理解损失函数。

我们将使用 dice损失 来优化分割模型。dice损失是分割模型中常用的损失函数。

它优点是在不平衡数据的存在下工作良好。在我们的脑肿瘤分割任务中,这一点尤其重要,因为大脑中很小的一部分会成为肿瘤区域。

dice损失 将测量P和G之间的误差。我们希望分子很大,当gi等于1时,我们希望Pi接近1。

我们也希望分母较小, 所以当gi等于0时,我们希望Pi接近0,否则这个项会很大,分母也会很大。

现在,我们取1减去这个分数,这样重叠区域越小,损失越大,相反,重叠区域越大,损失越小。

为了计算这个例子中的损失,我们将P和G元素相乘得到pigi。例如,0.9乘以1等于0.9。

为了计算分母,我们需要求pi平方和 和 gi的平方和。类似地,我们可以通过将p列平方得到pi的平方和g列得到gi的平方来计算这些。

我们可以将这些值代入这个特殊例子的dice损失中,结果大约是0.2。

下一步我们将研究分割模型的评估。

文章持续更新,可以关注微信公众号【医学图像人工智能实战营】获取最新动态,一个关注于医学图像处理领域前沿科技的公众号。坚持已实践为主,手把手带你做项目,打比赛,写论文。凡原创文章皆提供理论讲解,实验代码,实验数据。只有实践才能成长的更快,关注我们,一起学习进步~

我是Tina, 我们下篇博客见~

白天工作晚上写文,呕心沥血

觉得写的不错的话最后,求点赞,评论,收藏。或者一键三连
在这里插入图片描述

这篇关于深度学习用于疾病诊断-第一课第三周5-6节-数据增强以及dice损失函数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/328458

相关文章

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

C++ 函数 strftime 和时间格式示例详解

《C++函数strftime和时间格式示例详解》strftime是C/C++标准库中用于格式化日期和时间的函数,定义在ctime头文件中,它将tm结构体中的时间信息转换为指定格式的字符串,是处理... 目录C++ 函数 strftipythonme 详解一、函数原型二、功能描述三、格式字符串说明四、返回值五

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

使用SpringBoot整合Sharding Sphere实现数据脱敏的示例

《使用SpringBoot整合ShardingSphere实现数据脱敏的示例》ApacheShardingSphere数据脱敏模块,通过SQL拦截与改写实现敏感信息加密存储,解决手动处理繁琐及系统改... 目录痛点一:痛点二:脱敏配置Quick Start——Spring 显示配置:1.引入依赖2.创建脱敏

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

详解如何使用Python构建从数据到文档的自动化工作流

《详解如何使用Python构建从数据到文档的自动化工作流》这篇文章将通过真实工作场景拆解,为大家展示如何用Python构建自动化工作流,让工具代替人力完成这些数字苦力活,感兴趣的小伙伴可以跟随小编一起... 目录一、Excel处理:从数据搬运工到智能分析师二、PDF处理:文档工厂的智能生产线三、邮件自动化:

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷

Python数据分析与可视化的全面指南(从数据清洗到图表呈现)

《Python数据分析与可视化的全面指南(从数据清洗到图表呈现)》Python是数据分析与可视化领域中最受欢迎的编程语言之一,凭借其丰富的库和工具,Python能够帮助我们快速处理、分析数据并生成高质... 目录一、数据采集与初步探索二、数据清洗的七种武器1. 缺失值处理策略2. 异常值检测与修正3. 数据

Python中bisect_left 函数实现高效插入与有序列表管理

《Python中bisect_left函数实现高效插入与有序列表管理》Python的bisect_left函数通过二分查找高效定位有序列表插入位置,与bisect_right的区别在于处理重复元素时... 目录一、bisect_left 基本介绍1.1 函数定义1.2 核心功能二、bisect_left 与