c语言命题逻辑,C语言实现离散数学中的命题逻辑

2023-11-02 02:20

本文主要是介绍c语言命题逻辑,C语言实现离散数学中的命题逻辑,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

今天,终于完成了用C语言实现了离散数学里关于命题逻辑的运算,一开始想用栈来实现,但是发现自己对栈还不太熟悉,于是在网上参考了一下其他人的做法,最后终于整出来了。先做个记录,下次再用栈实现。

要求:

从键盘输入两个命题变元P和Q的真值,求它们的合取、析取、非取和单、双蕴涵的真值,

求任意一个命题公式的真值表(包括公式合法性检查),并根据真值表求主范式(分析取主范式、合取主范式)

一、算法分析

①合取/\:p,q都为1的时候为1,其他为0

C语言算法:

/**求P、Q的合取的函数**/

void Conj(int p,int q){

int a = p && q;

printf('\n \t\tP和Q的合取为:P/\\Q = %d\n',a);

}

②析取\/:p,q都为0的时候为0,其他为1

C语言算法:

/**求P、Q的析取的函数**/

void Disj(int p,int q){

int a = p || q;

printf('\n \t\tP和Q的析取为:P\\/Q = %d\n',a);

}

③非取!:p为1时,!p为0;p为0时,!P为1

C语言算法:

/**求P的非取的函数**/

void P_unor(int p){

int a = !p;

printf('\n\t\tP的非取为:!P = %d\n',a);

}

/**求Q的非取的函数**/

void Q_unor(int q){

int a = !q;

printf('\n\t\tQ的非取为:!Q = %d\n',a);

}

④蕴含->:p为1,q为0时为0,其他为1

C语言算法:

/**求P、Q的单蕴涵的函数**/

void S_impl(int p,int q){

int a = (!p) || q;

printf('\n\t\tP和Q的单蕴涵为:P -> Q = %d\n',a);

}

⑤双蕴涵:p,q同真同假

C语言算法:

/**求P、Q的双蕴涵的函数**/

void D_impl(int p,int q){

int a = ((!p) || q) && ((!q) || p);

printf('\n\t\tP和Q的双蕴涵为:P Q = %d\n',a);

}

⑥求任意一个命题公式的真值表

根据真值表求主范式

C语言算法:

首先是输入一个式子,判断其合理性后从式子中查找出变量的个数,开辟一个二进制函数,用来生成真值表,然后用函数运算,输出结果,并根据结果归类给范式,最后输出范式。

函数部分,主要是3个函数,一个为真值表递加函数,通过二进制的加法原理递进产生,一个为分级运算函数,这个函数是通过判断括号,选出最内级括号的内容执行运算函数,这样一级一级向外运算,最后得出最终结果,剩下一个为主运算函数,按照运算符号的优先级按顺序进行运算,如先将所有非运算运算完,再执行与运算。

⑦主运算函数

/**主运算函数**/

int MAP(char sz[N],char ccu[N],int icu[N],int h0)

{

int i, h = 0, j = 0, j1 = 0, j2 = 0, j3 = 0, j4 = 0, j5 = 0, i1, i2, p1 = -1, p2 = -1, s;

char dt[N];

s = strlen(sz);

if(s == 1)

if(sz[0] == -2) //判断是否是最后一项

return 0;

else

return 1; //1 就是sz[0]的值、

else{

for(i = 0; i < s-j; i ) //先处理非

if(sz[i] == '!'){

for(i1 = 0; i1 < h0; i1 )

if(sz[i 1] == ccu[i1])//将变量赋值并给P1

p1 = icu[i1];

if(sz[i 1] == -2)//如果是前运算结果的0,则P1等于0

p1 = 0;

if(p1 == -1)//如果是数字,直接给P1

p1 = sz[i 1];

dt[j 2] = !p1;//非运算

sz[i] = j 2;

j ;

p1 = 0;

for(i1 = i 1; i1 < s-j; i1 )

sz[i1] = sz[i1 1];//将后续式子前移一项

}

p1 = -1;

j1 = j;

for(i = 0; i < s-j1-2*j2; i ) // 处理与

if(sz[i] == '&'){

for(i1 = 0; i1 < h0; i1 ){

if(sz[i-1] == ccu[i1])//将变量赋值并给P1

p1 = icu[i1];

if(sz[i 1] == ccu[i1])//将变量赋值并给P2

p2 = icu[i1];

}

for(i2 = 2; i2 < j 2; i2 ) {

if(sz[i-1] == i2) //如果为前计算结果,将结果赋值并给P1

p1 = dt[i2];

if(sz[i 1] == i2) //如果为前计算结果,将结果赋值并给P2

p2 = dt[i2];

}

if(sz[i-1] == -2)//如果是前运算结果的0,则P1等于0

p1 = 0;

if(sz[i 1] == -2)//如果是前运算结果的0,则P2等于0

p2 = 0;

if(p1 == -1) //如果是数字,直接给P1

p1 = (int)(sz[i-1]);

if(p2 ==-1)//如果是数字,直接给P2

p2 = (int)(sz[i 1]);

dt[j 2] = p1 && p2;//与运算

sz[i-1] = j 2;

j ;

j2 ;

p1 = -1;

p2 = -1;

for(i1 = i; i1 < s-j1-2*j2; i1 )//将后续式子前移两项

sz[i1] = sz[i1 2];

i = i-1;

}

for(i = 0; i < s-j1-2*j2-2*j3; i ) // 处理或。

if(sz[i] == '|'){

for(i1 = 0; i1 < h0; i1 ){

if(sz[i-1] == ccu[i1])//将变量赋值并给P1

p1 = icu[i1];

if(sz[i 1] == ccu[i1])//将变量赋值并给P2

p2 = icu[i1];

}

for(i2=2;i2

if(sz[i-1] == i2) //如果为前计算结果,将结果赋值并给P1

p1 = dt[i2];

if(sz[i 1] == i2)//如果为前计算结果,将结果赋值并给P2

p2 = dt[i2];

}

if(sz[i-1] == -2)//如果是前运算结果的0,则P1等于0

p1 = 0;

if(sz[i 1] == -2)//如果是前运算结果的0,则P2等于0

p2 = 0;

if(p1 == -1)//如果是数字,直接给P1

p1 = sz[i-1];

if(p2 == -1)//如果是数字,直接给P2

p2 = sz[i 1];

dt[j 2] = p1 || p2;//或运算

sz[i-1] = j 2;

j ;

j3 ;

p1 = -1;

p2 = -1;

for(i1 = i; i1 < s-j1-2*j2-2*j3; i1 )//将后续式子前移两项

sz[i1]=sz[i1 2];

i--;

}

for(i = 0; i < s-j1-2*j2-2*j3-2*j4; i ) // 处理蕴含。

if(sz[i] == '^'){

for(i1 = 0; i1 < h0; i1 ){

if(sz[i-1] == ccu[i1])//将变量赋值并给P1

p1 = icu[i1];

if(sz[i 1] == ccu[i1])//将变量赋值并给P2

p2 = icu[i1];

}

for(i2 = 2; i2 < j 2; i2 ) {

if(sz[i-1] == i2) //如果为前计算结果,将结果赋值并给P1

p1 = dt[i2];

if(sz[i 1] == i2) //如果为前计算结果,将结果赋值并给P2

p2 = dt[i2];

}

if(sz[i-1] == -2)//如果是前运算结果的0,则P1等于0

p1 = 0;

if(sz[i 1] == -2)//如果是前运算结果的0,则P2等于0

p2 = 0;

if(p1 == -1)//如果是数字,直接给P1

p1 = sz[i-1];

if(p2 == -1)//如果是数字,直接给P2

p2 = sz[i 1];

dt[j 2] = (!p1) || p2;//蕴含运算

sz[i-1] = j 2;

j ;

j4 ;

p1 = -1;

p2 = -1;

for(i1 = i; i1 < s-j1-2*j2-2*j3-2*j4; i1 )//将后续式子前移两项

sz[i1] = sz[i1 2];

i--;

}

for(i = 0; i < s-j1-2*j2-2*j3-2*j4-2*j5; i ) // 处理等值。

if(sz[i] == '~'){

for(i1 = 0; i1 < h0; i1 ){

if(sz[i-1] == ccu[i1])//将变量赋值并给P1

p1 = icu[i1];

if(sz[i 1] == ccu[i1])//将变量赋值并给P2

p2 = icu[i1];

}

for(i2 = 2; i2 < j 2; i2 ) {

if(sz[i-1] == i2) //如果为前计算结果,将结果赋值并给P1

p1 = dt[i2];

if(sz[i 1] == i2) //如果为前计算结果,将结果赋值并给P2

p2 = dt[i2];

}

if(sz[i-1] == -2)//如果是前运算结果的0,则P1等于0

p1 = 0;

if(sz[i 1] == -2)//如果是前运算结果的0,则P2等于0

p2 = 0;

if(p1 == -1)//如果是数字,直接给P1

p1 = sz[i-1];

if(p2 == -1)//如果是数字,直接给P2

p2 = sz[i 1];

dt[j 2] = (!p1 || p2) && (!p2 || p1);//等值运算

sz[i-1] = j 2;

j ;

j5 ;

p1 = -1;

p2 = -1;

for(i1 = i; i1 < s-j1-2*j2-2*j3-2*j4-2*j5; i1 )//将后续式子前移两项

sz[i1] = sz[i1 2];

i--;

}

return dt[j 1];//返回结果

}

}

⑧分级运算函数

/**分级运算函数**/

int CR(char sz[N],char ccu[N],int icu[N],int h0)

{

int i,j,h,s,kh = 0,wz[N],a;

char xs1[N],ckh[N]; //xs1用来保存括号内的字符 ckh用来保存括号。

s = strlen(sz);

for(i = 0; i < s; i )

if(sz[i] == '(' || sz[i] == ')'){ //判断括号

wz[kh] = i; //存储括号位置

ckh[kh] = sz[i]; //存储括号类型

kh ;

}

if(kh == 0)

return MAP(sz,ccu,icu,h0); //如果无括号,直接运行

else{

for(i = 0; i < kh; i )

if(ckh[i] == ')') //找到第一个' )'

break;

for(j = wz[i-1] 1,h=0; j < wz[i]; j ,h ) //存储最内级括号中的内容

xs1[h] = sz[j];

xs1[h] = '\0';

a = MAP(xs1,ccu,icu,h0); //运行最内级括号的式子,得到结果

if(a == 1) //判断并存储结果

sz[wz[i-1]] = 1;

else

sz[wz[i-1]] = -2;

for(j = wz[i-1] 1; j < s wz[i-1] - wz[i]; j )//将括号后内容前移

sz[j] = sz[j wz[i] - wz[i-1]];

sz[j] = '\0';

return CR(sz,ccu,icu,h0);//循环执行

}

}

⑨二进制赋值函数

/**二进制赋值函数**/

void BVA(int b[N],int f){

int i;

i = f;

if(b[f] == 0) //加1

b[f] = 1;

else //进位

{

b[f] = 0;

BVA(b,--i);

}

}

二、程序运行如下

75462605_1

输入数据,进行操作选择:

选a:求P、Q的合取、析取、非取、单蕴涵、双蕴涵

75462605_2

输入数据:

75462605_3

选择进行的操作:

选a:

75462605_4

选b:

75462605_5

选g:

返回上一级

75462605_6

选b:求任意一个命题公式的真值表及其主范式

75462605_7

75462605_8

公式合法性检查:

75462605_9

输入合法数据后:

75462605_10

选择b:

返回上一级

75462605_11

选c:

退出系统

75462605_12

这篇关于c语言命题逻辑,C语言实现离散数学中的命题逻辑的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/327435

相关文章

Qt 设置软件版本信息的实现

《Qt设置软件版本信息的实现》本文介绍了Qt项目中设置版本信息的三种常用方法,包括.pro文件和version.rc配置、CMakeLists.txt与version.h.in结合,具有一定的参考... 目录在运行程序期间设置版本信息可以参考VS在 QT 中设置软件版本信息的几种方法方法一:通过 .pro

HTML5实现的移动端购物车自动结算功能示例代码

《HTML5实现的移动端购物车自动结算功能示例代码》本文介绍HTML5实现移动端购物车自动结算,通过WebStorage、事件监听、DOM操作等技术,确保实时更新与数据同步,优化性能及无障碍性,提升用... 目录1. 移动端购物车自动结算概述2. 数据存储与状态保存机制2.1 浏览器端的数据存储方式2.1.

基于 HTML5 Canvas 实现图片旋转与下载功能(完整代码展示)

《基于HTML5Canvas实现图片旋转与下载功能(完整代码展示)》本文将深入剖析一段基于HTML5Canvas的代码,该代码实现了图片的旋转(90度和180度)以及旋转后图片的下载... 目录一、引言二、html 结构分析三、css 样式分析四、JavaScript 功能实现一、引言在 Web 开发中,

SpringBoot中使用Flux实现流式返回的方法小结

《SpringBoot中使用Flux实现流式返回的方法小结》文章介绍流式返回(StreamingResponse)在SpringBoot中通过Flux实现,优势包括提升用户体验、降低内存消耗、支持长连... 目录背景流式返回的核心概念与优势1. 提升用户体验2. 降低内存消耗3. 支持长连接与实时通信在Sp

Conda虚拟环境的复制和迁移的四种方法实现

《Conda虚拟环境的复制和迁移的四种方法实现》本文主要介绍了Conda虚拟环境的复制和迁移的四种方法实现,包括requirements.txt,environment.yml,conda-pack,... 目录在本机复制Conda虚拟环境相同操作系统之间复制环境方法一:requirements.txt方法

Spring Boot 实现 IP 限流的原理、实践与利弊解析

《SpringBoot实现IP限流的原理、实践与利弊解析》在SpringBoot中实现IP限流是一种简单而有效的方式来保障系统的稳定性和可用性,本文给大家介绍SpringBoot实现IP限... 目录一、引言二、IP 限流原理2.1 令牌桶算法2.2 漏桶算法三、使用场景3.1 防止恶意攻击3.2 控制资源

springboot下载接口限速功能实现

《springboot下载接口限速功能实现》通过Redis统计并发数动态调整每个用户带宽,核心逻辑为每秒读取并发送限定数据量,防止单用户占用过多资源,确保整体下载均衡且高效,本文给大家介绍spring... 目录 一、整体目标 二、涉及的主要类/方法✅ 三、核心流程图解(简化) 四、关键代码详解1️⃣ 设置

Nginx 配置跨域的实现及常见问题解决

《Nginx配置跨域的实现及常见问题解决》本文主要介绍了Nginx配置跨域的实现及常见问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来... 目录1. 跨域1.1 同源策略1.2 跨域资源共享(CORS)2. Nginx 配置跨域的场景2.1

Python中提取文件名扩展名的多种方法实现

《Python中提取文件名扩展名的多种方法实现》在Python编程中,经常会遇到需要从文件名中提取扩展名的场景,Python提供了多种方法来实现这一功能,不同方法适用于不同的场景和需求,包括os.pa... 目录技术背景实现步骤方法一:使用os.path.splitext方法二:使用pathlib模块方法三

CSS实现元素撑满剩余空间的五种方法

《CSS实现元素撑满剩余空间的五种方法》在日常开发中,我们经常需要让某个元素占据容器的剩余空间,本文将介绍5种不同的方法来实现这个需求,并分析各种方法的优缺点,感兴趣的朋友一起看看吧... css实现元素撑满剩余空间的5种方法 在日常开发中,我们经常需要让某个元素占据容器的剩余空间。这是一个常见的布局需求