Lucene5学习之TermQuery使用

2023-11-02 01:48

本文主要是介绍Lucene5学习之TermQuery使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

    首先来学习用下TermQuery,这是最简单的一个Query实现,即查询索引文档中是否包含了指定的Term,Lucene官方API注释里是这样说的:

public class TermQuery
extends Query
A Query that matches documents containing a term. This may be combined with other terms with a BooleanQuery.

 那什么又是Term呢?还是看看官方给的解释吧

public final class Term
extends Object
implements Comparable<Term>
A Term represents a word from text. This is the unit of search. It is composed of two elements, the text of the word, as a string, and the name of the field that the text occurred in. Note that terms may represent more than words from text fields, but also things like dates, email addresses, urls, etc.

 一个Term表示着一个来自文本中的一个单词(因为老外眼里只有单词,没有中文,在中文里word可以理解为一个词语),它是一个搜索单元,它有两部分组成,单词文本和域的名称,后面着重提醒了我们,term不仅仅是文本中单词,还可以是日期,email地址,url链接等等。一句话,Term就是分词过后的一个个词组。

使用的时候new TermQuery(Term term)即可,Term对象的构造器有两个参数,fieldName和fieldValue,如:

new Term("title","Java");即表示在title域里查询包含Java的,示例代码如下:

Query query = new TermQuery(new Term(fieldName,queryString));

 当然你也可以通过QueryParser类来创建我们的Query对象,如:

QueryParser parser = new QueryParser(fieldName, new AnsjAnalyzer());
Query query = parser.parse(queryString);

    但两者还是有点小小区别的,QueryParser会经过分词器,会使用分词器把我们的queryString(用户输入的查询关键字)进行分词,我们都知道分词器一般都会先把文本先全部转成小写然后去掉停用词等等一系列操作,而TermQuery则不会,而是直接根据用户提供的fieldValue去分词后的Term里查找的,我们知道分词后索引里存储的Term的value肯定都是小写的,如果我们提供的fieldVlue是大写的,肯定是查询不到的,这是大家比较容易忽略的,举个例子吧,比如你的文本里包含了“I服了U”这个网络词汇的,默认肯定是不会把它当成一个词语,如果使用了ansj分词器并把这个词语配置到自定义词典里,如:



 

那么分词后我们索引里的term中存储的应该是i服了u,而不是I服了U,所以如果你们使用I服了U作为搜索关键字来搜索,是搜不到任何结果的,这时你就蒙圈了,我不是已经配置了自定义词典了吗?为什么找不到?为了避免你们犯这种错误,特此提醒,TermQuery不会对你提供的fieldValue做任何处理,而QueryParser会,这也是为什么QueryParser构建的时候需要用户提供Analyzer对象而TermQuery不需要的原因。

    TermQuery使用起来很简单,使用时候该注意的问题我也说过了,就说这么多,打完收工!希望对你们学习Lucene有所帮助。

     如果你还有什么问题请加我Q-Q:7-3-6-0-3-1-3-0-5,

或者加裙
一起交流学习!

这篇关于Lucene5学习之TermQuery使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/327263

相关文章

使用Redis快速实现共享Session登录的详细步骤

《使用Redis快速实现共享Session登录的详细步骤》在Web开发中,Session通常用于存储用户的会话信息,允许用户在多个页面之间保持登录状态,Redis是一个开源的高性能键值数据库,广泛用于... 目录前言实现原理:步骤:使用Redis实现共享Session登录1. 引入Redis依赖2. 配置R

使用Python的requests库调用API接口的详细步骤

《使用Python的requests库调用API接口的详细步骤》使用Python的requests库调用API接口是开发中最常用的方式之一,它简化了HTTP请求的处理流程,以下是详细步骤和实战示例,涵... 目录一、准备工作:安装 requests 库二、基本调用流程(以 RESTful API 为例)1.

使用Python开发一个Ditto剪贴板数据导出工具

《使用Python开发一个Ditto剪贴板数据导出工具》在日常工作中,我们经常需要处理大量的剪贴板数据,下面将介绍如何使用Python的wxPython库开发一个图形化工具,实现从Ditto数据库中读... 目录前言运行结果项目需求分析技术选型核心功能实现1. Ditto数据库结构分析2. 数据库自动定位3

Python yield与yield from的简单使用方式

《Pythonyield与yieldfrom的简单使用方式》生成器通过yield定义,可在处理I/O时暂停执行并返回部分结果,待其他任务完成后继续,yieldfrom用于将一个生成器的值传递给另一... 目录python yield与yield from的使用代码结构总结Python yield与yield

Go语言使用select监听多个channel的示例详解

《Go语言使用select监听多个channel的示例详解》本文将聚焦Go并发中的一个强力工具,select,这篇文章将通过实际案例学习如何优雅地监听多个Channel,实现多任务处理、超时控制和非阻... 目录一、前言:为什么要使用select二、实战目标三、案例代码:监听两个任务结果和超时四、运行示例五

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl

Java使用Thumbnailator库实现图片处理与压缩功能

《Java使用Thumbnailator库实现图片处理与压缩功能》Thumbnailator是高性能Java图像处理库,支持缩放、旋转、水印添加、裁剪及格式转换,提供易用API和性能优化,适合Web应... 目录1. 图片处理库Thumbnailator介绍2. 基本和指定大小图片缩放功能2.1 图片缩放的

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3