Python - pandas DataFrame创建、数据提取(loc、iloc)

2023-11-02 00:58

本文主要是介绍Python - pandas DataFrame创建、数据提取(loc、iloc),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 1 新建一个DataFrame表
  • 2 获取列名
    • 2.1 list(df)
    • 2.2 .columns
  • 3 通过[]获取指定行或指定列的数据
    • 3.1 获取指定行(单行或多行,DataFrame)
    • 3.2 获取指定列(单列或多列,Series/DataFrame)
  • 4 通过.loc[]获取指定行、列的数据
    • 4.1 获取单个数据(类型依数据本身)
    • 4.2 获取单行数据(Series/DataFrame)
    • 4.3 获取单列数据(Series/DataFrame)
    • 4.3 获取多行多列的数据(DataFrame)
    • 4.4 根据列值条件获取指定数据(Series/DataFrame)
  • 5 通过.iloc[]用数字定位获取指定行、列的数据
    • 5.1 获取单个数据(类型依数据本身)
    • 5.2 获取单行数据(Series/DataFrame)
    • 5.2 获取单列数据(Series/DataFrame)
    • 5.3 获取多行多列的数据(DataFrame)
  • 6 复制一个表的数据到另一个表

1 新建一个DataFrame表

import numpy as np
import pandas as pd
df = pd.DataFrame([['Snow','M',22],['Tyrion','M',32],['Sansa','F',18],['Arya','F',14]], columns=['name','gender','age'])print(df)

     name    gender  age
0    Snow     M       22
1    Tyrion   M       32
2    Sansa    F       18
3    Arya     F       14

2 获取列名

2.1 list(df)

代码示例:

df = pd.DataFrame([['Snow','M',22],['Tyrion','M',32],['Sansa','F',18],['Arya','F',14]], columns=['name','gender','age'])
cols = list(df)
print(cols)
print(type(cols))
['name', 'gender', 'age']
<class 'list'>

2.2 .columns

代码示例:

df = pd.DataFrame([['Snow','M',22],['Tyrion','M',32],['Sansa','F',18],['Arya','F',14]], columns=['name','gender','age'])
cols = df.columns
print(cols)
print(type(cols))
Index(['name', 'gender', 'age'], dtype='object')
<class 'pandas.core.indexes.base.Index'>

3 通过[]获取指定行或指定列的数据

3.1 获取指定行(单行或多行,DataFrame)

格式:

# 获取第row_start_index行到第row_end_index-1行的数据,返回值为DataFrame类型
df[row_start_index:row_end_index] 

代码示例:

df = pd.DataFrame([['Snow','M',22],['Tyrion','M',32],['Sansa','F',18],['Arya','F',14]], columns=['name','gender','age'])
df_1 = df[1:2]# 获得第1行的数据
print(df_1,'\n',type(df_1))
     name gender  age
1  Tyrion      M   32
<class 'pandas.core.frame.DataFrame'>

3.2 获取指定列(单列或多列,Series/DataFrame)

格式:

# 获取单列,返回值为Series类型
df['column_name'] 
# 获取单列,返回值为DataFrame类型
df[['column_name']]
# 获取多列,返回值为DataFrame类型
df[['column_name1','column_name2',...]]

代码示例:

df = pd.DataFrame([['Snow','M',22],['Tyrion','M',32],['Sansa','F',18],['Arya','F',14]], columns=['name','gender','age'])
series_1 = df['name']
df_1 = df[['name']]
df_2 = df[['name','gender']]
print(series_1,'\n',type(series_1),'\n',df_1,'\n',type(df_1),'\n',df_2,'\n',type(df_2))
0      Snow
1    Tyrion
2     Sansa
3      Arya
Name: name, dtype: object <class 'pandas.core.series.Series'> name
0    Snow
1  Tyrion
2   Sansa
3    Arya <class 'pandas.core.frame.DataFrame'> name gender
0    Snow      M
1  Tyrion      M
2   Sansa      F
3    Arya      F <class 'pandas.core.frame.DataFrame'>

4 通过.loc[]获取指定行、列的数据

4.1 获取单个数据(类型依数据本身)

格式:

# 返回值类型依数据本身
df.loc[index,column_name] 
df = pd.DataFrame([['Snow','M',22],['Tyrion','M',32],['Sansa','F',18],['Arya','F',14]], columns=['name','gender','age'])
df_1 = df.loc[0,"name"]
print(df_1,'\n',type(df_1))
Snow <class 'str'>

4.2 获取单行数据(Series/DataFrame)

格式:

# 返回值为Series类型
df.loc[index] 
# 返回值为DataFrame类型
df.loc[index:index] 
df = pd.DataFrame([['Snow','M',22],['Tyrion','M',32],['Sansa','F',18],['Arya','F',14]], columns=['name','gender','age'])
df_1 = df.loc[0]
df_2 = df.loc[0:0]
print(df_1,'\n',type(df_1),'\n',df_2,'\n',type(df_2))
name      Snow
gender       M
age         22
Name: 0, dtype: object 
<class 'pandas.core.series.Series'> name gender  age
0  Snow      M   22 
<class 'pandas.core.frame.DataFrame'>

4.3 获取单列数据(Series/DataFrame)

格式:

# 返回值为Series类型
df.loc[:,column_name] 
# 返回值为DataFrame类型
df.loc[:,[column_name]]
df = pd.DataFrame([['Snow','M',22],['Tyrion','M',32],['Sansa','F',18],['Arya','F',14]], columns=['name','gender','age'])
df_1 = df.loc[:,"name"]
df_2 = df.loc[:,["name"]]
print(df_1,'\n',type(df_1),'\n',df_2,'\n',type(df_2))
0      Snow
1    Tyrion
2     Sansa
3      Arya
Name: name, dtype: object 
<class 'pandas.core.series.Series'> name
0    Snow
1  Tyrion
2   Sansa
3    Arya 
<class 'pandas.core.frame.DataFrame'>

4.3 获取多行多列的数据(DataFrame)

格式:

# 获取第start_index行到end_index行,'column_name1','column_name2',...列的数据
df.loc[start_index:end_index,['column_name1','column_name2',...]] 
# 获取index1,index2,...行,'column_name1','column_name2',...列的数据
df.loc[[index1,index2,...],['column_name1','column_name2',...]]
df = pd.DataFrame([['Snow','M',22],['Tyrion','M',32],['Sansa','F',18],['Arya','F',14]], columns=['name','gender','age'])
df_1 = df.loc[0:2, ['name', 'age']]  # 获取第0行到第2行,name列和age列的数据
df_2 = df.loc[[2, 3], ['name', 'age']]  # 获取指定的第2行和第3行,name和age列的数据
print(df_1,'\n',type(df_1),'\n',df_2,'\n',type(df_2))
     name  age
0    Snow   22
1  Tyrion   32
2   Sansa   18 <class 'pandas.core.frame.DataFrame'> name  age
2  Sansa   18
3   Arya   14 <class 'pandas.core.frame.DataFrame'>

4.4 根据列值条件获取指定数据(Series/DataFrame)

df = pd.DataFrame([['Snow','M',22],['Tyrion','M',32],['Sansa','F',18],['Arya','F',14]], columns=['name','gender','age'])
df_1 = df.loc[df['gender']=='M',:] #获取gender列值是M的全部数据
df_2 = df.loc[df['gender']=='M','name'] #获取gender列值是M,name列的数据
df_3 = df.loc[df['gender']=='M',['name']] #获取gender列值是M,name列的数据
df_4 = df.loc[df['gender']=='M',['name','age']] #获取gender列值是M,name和age列的数据
print(df_1,'\n',type(df_1),'\n',df_2,'\n',type(df_2),'\n',df_3,'\n',type(df_3),'\n',df_4,'\n',type(df_4))
     name gender  age
0    Snow      M   22
1  Tyrion      M   32 <class 'pandas.core.frame.DataFrame'> 0      Snow
1    Tyrion
Name: name, dtype: object <class 'pandas.core.series.Series'> name
0    Snow
1  Tyrion <class 'pandas.core.frame.DataFrame'> name  age
0    Snow   22
1  Tyrion   32 <class 'pandas.core.frame.DataFrame'>

5 通过.iloc[]用数字定位获取指定行、列的数据

在column_name特别长或者index是时间序列等各种不方便输入的情况下,可以用iloc[row_index, column_index],它完全用数字来定位。

5.1 获取单个数据(类型依数据本身)

格式:

df.iloc[indexX,indexY] 
df = pd.DataFrame([['Snow','M',22],['Tyrion','M',32],['Sansa','F',18],['Arya','F',14]], columns=['name','gender','age'])
df_1 = df.iloc[0, 0]  # 获取第0行第0列的数据,'Snow'
df_2 = df.iloc[1, 2]  # 获取第1行第2列的数据,32
print(df_1,'\n',type(df_1),'\n',df_2,'\n',type(df_2))
Snow 
<class 'str'> 
32 
<class 'numpy.int64'>

5.2 获取单行数据(Series/DataFrame)

格式:

# 返回值为Series类型
df.iloc[index] 
# 返回值为DataFrame类型
df.iloc[index:index+1] 
df = pd.DataFrame([['Snow','M',22],['Tyrion','M',32],['Sansa','F',18],['Arya','F',14]], columns=['name','gender','age'])
df_1 = df.iloc[0]
df_2 = df.iloc[0:1]
print(df_1,'\n',type(df_1),'\n',df_2,'\n',type(df_2))
name      Snow
gender       M
age         22
Name: 0, dtype: object 
<class 'pandas.core.series.Series'> name gender  age
0  Snow      M   22 
<class 'pandas.core.frame.DataFrame'>

5.2 获取单列数据(Series/DataFrame)

格式:

# 返回值为Series类型
df.iloc[:,index] 
# 返回值为DataFrame类型
df.iloc[:,index:index+1] 
df = pd.DataFrame([['Snow','M',22],['Tyrion','M',32],['Sansa','F',18],['Arya','F',14]], columns=['name','gender','age'])
df_1 = df.iloc[:,0]
df_2 = df.iloc[:,0:1]
print(df_1,'\n',type(df_1),'\n',df_2,'\n',type(df_2))
0      Snow
1    Tyrion
2     Sansa
3      Arya
Name: name, dtype: object <class 'pandas.core.series.Series'> name
0    Snow
1  Tyrion
2   Sansa
3    Arya <class 'pandas.core.frame.DataFrame'>

5.3 获取多行多列的数据(DataFrame)

格式:

# 获取第start_index行到end_index-1行,index1,index2,...列的数据
df.iloc[start_index:end_index,[index1,index2,...]] 
# 获取index1,index2,...行,第start_index行到end_index-1列的数据
df.iloc[[index1,index2,...],start_index:end_index]
df = pd.DataFrame([['Snow','M',22],['Tyrion','M',32],['Sansa','F',18],['Arya','F',14]], columns=['name','gender','age'])
df_1 = df.iloc[[1, 3], 0:1]  # 获取第1行和第3行,第0列的数据
df_2 = df.iloc[1:3, [1, 2]]  # 获取第1行到第2行,第1列和第2列的数据
print(df_1,'\n',type(df_1),'\n',df_2,'\n',type(df_2))
     name
1  Tyrion
3    Arya 
<class 'pandas.core.frame.DataFrame'> gender  age
1      M   32
2      F   18 
<class 'pandas.core.frame.DataFrame'>

6 复制一个表的数据到另一个表

data_copy = data.copy()

这篇关于Python - pandas DataFrame创建、数据提取(loc、iloc)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/326982

相关文章

Python按照24个实用大方向精选的上千种工具库汇总整理

《Python按照24个实用大方向精选的上千种工具库汇总整理》本文整理了Python生态中近千个库,涵盖数据处理、图像处理、网络开发、Web框架、人工智能、科学计算、GUI工具、测试框架、环境管理等多... 目录1、数据处理文本处理特殊文本处理html/XML 解析文件处理配置文件处理文档相关日志管理日期和

Python标准库datetime模块日期和时间数据类型解读

《Python标准库datetime模块日期和时间数据类型解读》文章介绍Python中datetime模块的date、time、datetime类,用于处理日期、时间及日期时间结合体,通过属性获取时间... 目录Datetime常用类日期date类型使用时间 time 类型使用日期和时间的结合体–日期时间(

使用Python开发一个Ditto剪贴板数据导出工具

《使用Python开发一个Ditto剪贴板数据导出工具》在日常工作中,我们经常需要处理大量的剪贴板数据,下面将介绍如何使用Python的wxPython库开发一个图形化工具,实现从Ditto数据库中读... 目录前言运行结果项目需求分析技术选型核心功能实现1. Ditto数据库结构分析2. 数据库自动定位3

Python yield与yield from的简单使用方式

《Pythonyield与yieldfrom的简单使用方式》生成器通过yield定义,可在处理I/O时暂停执行并返回部分结果,待其他任务完成后继续,yieldfrom用于将一个生成器的值传递给另一... 目录python yield与yield from的使用代码结构总结Python yield与yield

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl

pandas数据的合并concat()和merge()方式

《pandas数据的合并concat()和merge()方式》Pandas中concat沿轴合并数据框(行或列),merge基于键连接(内/外/左/右),concat用于纵向或横向拼接,merge用于... 目录concat() 轴向连接合并(1) join='outer',axis=0(2)join='o

Django开发时如何避免频繁发送短信验证码(python图文代码)

《Django开发时如何避免频繁发送短信验证码(python图文代码)》Django开发时,为防止频繁发送验证码,后端需用Redis限制请求频率,结合管道技术提升效率,通过生产者消费者模式解耦业务逻辑... 目录避免频繁发送 验证码1. www.chinasem.cn避免频繁发送 验证码逻辑分析2. 避免频繁

批量导入txt数据到的redis过程

《批量导入txt数据到的redis过程》用户通过将Redis命令逐行写入txt文件,利用管道模式运行客户端,成功执行批量删除以Product*匹配的Key操作,提高了数据清理效率... 目录批量导入txt数据到Redisjs把redis命令按一条 一行写到txt中管道命令运行redis客户端成功了批量删除k

精选20个好玩又实用的的Python实战项目(有图文代码)

《精选20个好玩又实用的的Python实战项目(有图文代码)》文章介绍了20个实用Python项目,涵盖游戏开发、工具应用、图像处理、机器学习等,使用Tkinter、PIL、OpenCV、Kivy等库... 目录① 猜字游戏② 闹钟③ 骰子模拟器④ 二维码⑤ 语言检测⑥ 加密和解密⑦ URL缩短⑧ 音乐播放

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group