正规化方程Normal Equations解析

2023-11-02 00:41

本文主要是介绍正规化方程Normal Equations解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  如果需要代做算法,可以联系我...博客右侧有联系方式。

一、正规化方程概念

  假设我们有m个样本。特征向量的维度为n。因此,可知样本为{(x(1),y(1)), (x(2),y(2)),... ..., (x(m),y(m))},其中对于每一个样本中的x(i),都有x(i)={x1(i), xn(i),... ...,xn(i)}。令 H(θ)=θ+ θ1x1 +θ2x+... + θnxn,则有

  若希望H(θ)=Y,则有

  X · θ = Y

  我们先来回忆一下两个概念:单位矩阵 和 矩阵的逆,看看它们有什么性质。

  (1)单位矩阵E

  AE=EA=A

  (2)矩阵的逆A-1

  要求:A必须为方阵

  性质:AA-1=A-1A=E

  再来看看式子 X · θ = Y

  若想求出θ,那么我们需要做一些转换:

  step1:先把θ左边的矩阵变成一个方阵。通过乘以XT可以实现,则有

  XTX · θ = XTY

  step2:把θ左边的部分变成一个单位矩阵,这样就可以让它消失于无形了……

  (XTX)-1(XTX) · θ = (XTX)-1XTY

  step3:由于(XTX)-1(XTX) = E,因此式子变为

  Eθ = (XTX)-1XTY

  E可以去掉,因此得到

  θ = (XTX)-1XTY

  这就是我们所说的Normal Equation了。

二、Normal Equation VS Gradient Descent

  Normal Equation 跟 Gradient Descent(梯度下降)一样,可以用来求权重向量θ。但它与Gradient Descent相比,既有优势也有劣势。

  优势:Normal Equation可以不在意x特征的scale。比如,有特征向量X={x1, x2}, 其中x1的range为1~2000,而x2的range为1~4,可以看到它们的范围相差了500倍。如果使用Gradient Descent方法的话,会导致椭圆变得很窄很长,而出现梯度下降困难,甚至无法下降梯度(因为导数乘上步长后可能会冲出椭圆的外面)。但是,如果用Normal Equation方法的话,就不用担心这个问题了。因为它是纯粹的矩阵算法。

  劣势:相比于Gradient Descent,Normal Equation需要大量的矩阵运算,特别是求矩阵的逆。在矩阵很大的情况下,会大大增加计算复杂性以及对计算机内存容量的要求。

  什么情况下会出现Normal Equation,该如何应对?

  (1)当特征向量的维度过多时(如,m <= n 时)

   解决方法:① 使用regularization方式

     or ②delete一些特征维度

  (2)有redundant features(也称为linearly dependent feature)

  例如, x1= size in feet2

    x2 = size in m2

  feet和m的换算为 1m≈3.28feet所以,x1 ≈ 3.28* x2, 因此x1和x2是线性相关的(也可以说x1和x2之间有一个是冗余的)

  解决方法:找出冗余的特征维度,删除之。

三、例子

  y(i)表示价格,x(i)表示房屋面积和房间数:

  样本数m=47。

  step1:对数据进行预处理

  给每一个x向量,都增加一个x0=1的分量。

m = 47;
x=[ones(m,1),ex3x];

  查看x矩阵:

  step2:带入normal equation公式θ = (XTX)-1XTY,求解权重向量。

 y=ex3y;theta = inv(x'*x)*x'*y;

求得θ向量为

  如果我想预计“1650-square-foot house with 3 bedrooms”的价格,那么由X * θ = Y可知:

price = [1,1650,3]* theta ;

  我们取消matlab中的科学计数法,看看price的价格是多少:

>> format long g
>> price

  price =  293081.464334897

  我们在给出的样本中,找一个接近的样本比比看:

  23号样本的房屋面积为1604,房间数也为3,它的价格为

  我们可以尝试画出H(θ)函数的图像看看:

  先分别用min和max函数找出房屋面积(x1)和房间个数(x2)的最大和最小值,有

  x1∈[852,4478]

  x2∈[1,5]

x1=linspace(852,4478,47);
x2=linspace(1,5,47);
[xx1,xx2]=meshgrid(x1,x2);
h_theta = theta(1)*ones(47,47) + theta(2)*xx1 + theta(3)*xx2;
surf(xx1,xx2,h_theta);

  可以看到H(θ)为如下平面:

   梯度下降需要预先确定学习速率、迭代次数,和数据规范化  Feature Scaling。

这篇关于正规化方程Normal Equations解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/326922

相关文章

线上Java OOM问题定位与解决方案超详细解析

《线上JavaOOM问题定位与解决方案超详细解析》OOM是JVM抛出的错误,表示内存分配失败,:本文主要介绍线上JavaOOM问题定位与解决方案的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一、OOM问题核心认知1.1 OOM定义与技术定位1.2 OOM常见类型及技术特征二、OOM问题定位工具

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶

深入解析C++ 中std::map内存管理

《深入解析C++中std::map内存管理》文章详解C++std::map内存管理,指出clear()仅删除元素可能不释放底层内存,建议用swap()与空map交换以彻底释放,针对指针类型需手动de... 目录1️、基本清空std::map2️、使用 swap 彻底释放内存3️、map 中存储指针类型的对象

Java Scanner类解析与实战教程

《JavaScanner类解析与实战教程》JavaScanner类(java.util包)是文本输入解析工具,支持基本类型和字符串读取,基于Readable接口与正则分隔符实现,适用于控制台、文件输... 目录一、核心设计与工作原理1.底层依赖2.解析机制A.核心逻辑基于分隔符(delimiter)和模式匹

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

深度解析Python yfinance的核心功能和高级用法

《深度解析Pythonyfinance的核心功能和高级用法》yfinance是一个功能强大且易于使用的Python库,用于从YahooFinance获取金融数据,本教程将深入探讨yfinance的核... 目录yfinance 深度解析教程 (python)1. 简介与安装1.1 什么是 yfinance?