【R统计】各式各样的插补法解决数据缺失的问题!

2023-11-02 00:28

本文主要是介绍【R统计】各式各样的插补法解决数据缺失的问题!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  • 💂 个人信息:酷在前行
  • 👍 版权: 博文由【酷在前行】原创、需要转载请联系博主
  • 👀 如果博文对您有帮助,欢迎点赞、关注、收藏 + 订阅专栏
  • 🔖 本文收录于【R统计】,该专栏主要介绍R语言实现统计分析的过程,如数据的描述性统计、t检验、方差分析、相关性、线性回归等等。请大家多多关注点赞和支持,共同进步~ 欢迎大家订阅!

📋 文章目录

  • 构建数据
  • 简单插补
    • 均值/中位数插补
    • 随机插补
  • 基于模型的插补方法
    • 线性回归插补
    • k-最近邻插补 (k-NN)
    • 随机森林插补
  • 多重插补 (Multiple Imputation)
  • 数据插补效果展示

   在日常科研工作中,缺失数据是一个很常见的问题。特别是在大型的数据集中,由于各种不可抗因素,数据缺失几乎是难以避免的。但这就带来一个问题:当我们面对缺失数据时,应该如何处理?直接删除含有缺失值的数据行似乎是一个简单且直接的方法,但这样会导致有效数据的损失。今天,我想为大家分享几种处理数据缺失的方法。请注意,这些方法各有利弊,最适合的方法应该基于具体的数据特点和研究目的来选择。

构建数据

首先,我们要读入一个30行、14列的生态数据集。这个数据集用于示范如何处理数据中的缺失值。通过随机抽样方法,我们在数据集的copy_SOC列中人为地产生了一些缺失值。

# 数据读入test_data<- read.csv('H:/data/test_data.csv')test_data$copy_SOC <- test_data$SOC# 计算需要替换为NA的数据个数
num_na <- round(nrow(test_data) * 0.20)# 随机选择 20%索引
random_indices <- sample(1:nrow(test_data), size=num_na)# 替换选择的索引对应的数据为NA
test_data[random_indices,15] <- NAcolSums(is.na(test_data))sites             NPP            ANPP    Root.biomass             SOC 0               0               0               0               0 TN              pH            Clay            Silt            Sand 0               0               0               0               0 Bulk.density      total.PLFA    Fungal.PLFAs Bacterial.PLFAs        copy_SOC 0               0               0               0               6 

看到其中copy_SOC列有6个缺失值

简单插补

均值/中位数插补

这是一个非常基础且常用的方法。适用于数据缺失是随机的情况。方法是直接用变量的均值或中位数替代缺失值。

# 使用列的均值、中位数或众数来填充缺失值。这是最简单的方法。
test_data$mean_copy_SOC <- test_data$copy_SOC
test_data$mean_copy_SOC[is.na(test_data$mean_copy_SOC)] <- mean(test_data$copy_SOC, na.rm = TRUE)test_data$median_copy_SOC <- test_data$copy_SOC
test_data$median_copy_SOC[is.na(test_data$median_copy_SOC)] <- median(test_data$copy_SOC, na.rm = TRUE)

随机插补

直接从已有的观测值中随机选择一个值来替代缺失值。这种方法适用于数据缺失是完全随机的情况。

# 从已有的观测值中随机选择值来填充缺失值。
library(Hmisc)
test_data$Hmisc_copy_SOC <- test_data$copy_SOC
test_data$Hmisc_copy_SOC <- impute(test_data$Hmisc_copy_SOC,  'random')# 当使用impute函数时,确保你的数据是数值型的,因为这个函数主要针对数值数据设计的。
# impute 也可以使用均值,中值进行插值
# impute(test_data$Hmisc_copy_SOC,  'mean')
# impute(test_data$Hmisc_copy_SOC,  'median')

基于模型的插补方法

线性回归插补

利用其他变量对有缺失值的变量进行线性回归预测,然后用预测值来替代缺失值。

#   使用已知的其他变量作为预测变量,进行线性回归,然后使用该回归模型来预测缺失值。
test_data$lm_copy_SOC <- test_data$copy_SOCtrain_data <- test_data[!is.na(test_data$lm_copy_SOC),]# 使用train_data建立线性模型
lm_fit <- lm(lm_copy_SOC ~ NPP+ANPP+Root.biomass+TN+pH+Clay+Silt+Sand+Bulk.density+total.PLFA+   Fungal.PLFAs+Bacterial.PLFAs,train_data )
# 对线性模型进行逐步回归,筛选变量
lm_fit2 <- step(lm_fit)#模型总结
summary(lm_fit2)Call:
lm(formula = lm_copy_SOC ~ NPP + ANPP + Root.biomass + TN + Clay + Sand + Bulk.density + total.PLFA + Fungal.PLFAs + Bacterial.PLFAs, data = train_data)Residuals:Min      1Q  Median      3Q     Max 
-2.9593 -2.0936  0.2103  1.0633  4.2886 Coefficients:Estimate Std. Error t value Pr(>|t|)    
(Intercept)     -50.34984   29.42610  -1.711   0.1308    
NPP              -0.03340    0.01210  -2.760   0.0281 *  
ANPP             -0.34054    0.27252  -1.250   0.2516    
Root.biomass      0.05054    0.04098   1.233   0.2573    
TN               15.00918    1.48659  10.096 2.01e-05 ***
Clay              1.17952    1.16784   1.010   0.3461    
Sand              0.65299    0.38771   1.684   0.1360    
Bulk.density     -9.35362    8.41716  -1.111   0.3032    
total.PLFA       -1.39401    0.90615  -1.538   0.1678    
Fungal.PLFAs      2.88526    1.91431   1.507   0.1755    
Bacterial.PLFAs   2.53241    1.72284   1.470   0.1850    
---
Signif. codes:  0***0.001**0.01*0.05 ‘.’ 0.1 ‘ ’ 1Residual standard error: 3.586 on 7 degrees of freedom
Multiple R-squared:  0.9934, Adjusted R-squared:  0.984 
F-statistic: 105.4 on 10 and 7 DF,  p-value: 1.149e-06# 删选除用于预测的数据集
predict_data <- test_data[is.na(test_data$lm_copy_SOC),names(coefficients(lm_fit2))[-1]]# 使用该模型预测缺失值
predicted_values <- predict(lm_fit2, newdata = predict_data)# 将预测的值插入到数据中的缺失位置
test_data$lm_copy_SOC[is.na(test_data$lm_copy_SOC)] <- predicted_values

这种方法首先使用其他已知变量建立线性模型,然后用该模型预测缺失值。

k-最近邻插补 (k-NN)

该方法通过查找整个数据集中与缺失值最接近的k个观测值来插补数据。

#   使用DMwR包的knnImputation函数,基于k-NN方法填充缺失值。
remotes::install_github("cran/DMwR")library(DMwR)
test_data$DMwR_copy_SOC <- test_data$copy_SOC
knnImputation_data <- knnImputation(test_data)test_data$DMwR_copy_SOC <- knnImputation_data$DMwR_copy_SOC

随机森林插补

随机森林是一种集成学习方法,可以用来处理缺失数据问题。

#   使用missForest包,该方法基于随机森林算法对缺失值进行插补。library(missForest)
test_data$missForest_copy_SOC <- test_data$copy_SOCresult <- missForest(as.matrix(test_data))
result$OOBerrortest_data_missForest <- as.data.frame(result$ximp)test_data$missForest_copy_SOC <- test_data_missForest$missForest_copy_SOC

多重插补 (Multiple Imputation)

多重插补是一个更为复杂的方法,但也是目前广泛被认为是处理缺失数据的最佳方法之一。

#有多种实现途径使用mice包进行多重插补。这是一种更复杂但被广泛接受的方法,它创建了多个数据集,并在每个数据集上进行分析。library(mice)
test_data$mice_copy_SOC <- test_data$copy_SOC# 进行插补
imputed_test_data <- mice(test_data[c(8:14,22)], m = 5, maxit = 50, method = 'pmm', seed = 10) 
# m代表生成的数据集数量, 最大迭代50次, pmm 方法,也可以使用其他方法,具体有
# pmm                   any Predictive mean matching
# midastouch            any Weighted predictive mean matching
# sample               any Random sample from observed values
# cart                 any Classification and regression trees
# rf                   any Random forest imputations
# mean                 numeric Unconditional mean imputation
# norm                 numeric Bayesian linear regression
# norm.nob              numeric Linear regression ignoring model error
# norm.boot             numeric Linear regression using bootstrap
# norm.predict         numeric Linear regression, predicted values
# lasso.norm           numeric Lasso linear regression
# lasso.select.norm     numeric Lasso select + linear regression
# quadratic             numeric Imputation of quadratic terms
# ri                   numeric Random indicator for nonignorable data
# logreg               binary Logistic regression
# logreg.boot          binary Logistic regression with bootstrap
# lasso.logreg         binary Lasso logistic regression
# lasso.select.logreg   binary Lasso select + logistic regression
# polr                 ordered Proportional odds model
# polyreg               unordered Polytomous logistic regression
# lda                   unordered Linear discriminant analysis
# 2l.norm               numeric Level-1 normal heteroscedastic
# 2l.lmer               numeric Level-1 normal homoscedastic, lmer
# 2l.pan                numeric Level-1 normal homoscedastic, pan
# 2l.bin               binary Level-1 logistic, glmer
# 2lonly.mean          numeric Level-2 class mean
# 2lonly.norm           numeric Level-2 class normal
# 2lonly.pmm           any Level-2 class predictive mean matching# 插补的数据
imputed_test_data$imp$mice_copy_SOC# 选择第一个数据集
completed_test_data <- mice::complete(imputed_test_data) test_data$mice_copy_SOC <- completed_test_data$mice_copy_SOC

数据插补效果展示

最后,我们可以使用散点图来直观地查看各种插补方法与原始数据之间的关系。

library(ggplot2)#设置绘图主题
the <- theme_bw()+theme(legend.position = "none",axis.ticks = element_line(color = "black"),axis.text = element_text(color = "black", size=13),axis.title= element_text(color = "black", size=13),axis.line = element_line(color = "black"),panel.grid.minor = element_blank(),panel.grid.major = element_blank())test_data %>% dplyr::select(SOC, "mean_copy_SOC", "median_copy_SOC", "Hmisc_copy_SOC","lm_copy_SOC", "DMwR_copy_SOC", "missForest_copy_SOC","mice_copy_SOC") %>% pivot_longer(cols = -1, ) %>% ggplot(aes(x=value,y=SOC))+geom_point() +geom_smooth(method = 'lm',se=FALSE) +stat_poly_eq(use_label(c( "R2",  "P"), sep = "*\"; \"*"), formula = y ~ x)+the+labs(x= 'fited', y= 'real')+facet_wrap(name~.,ncol=3)+                     geom_abline(intercept = 0, slope = 1) # 1:1线

在这里插入图片描述
数据缺失是科研中常见的问题,但幸好我们有许多方法可以处理这个问题。本文介绍的方法只是其中的一部分,实际上还有许多其他的方法等待大家去探索和实践。希望这篇文章能对大家有所帮助!如果有任何问题或建议,欢迎留言交流。

这篇关于【R统计】各式各样的插补法解决数据缺失的问题!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/326827

相关文章

Java中读取YAML文件配置信息常见问题及解决方法

《Java中读取YAML文件配置信息常见问题及解决方法》:本文主要介绍Java中读取YAML文件配置信息常见问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 目录1 使用Spring Boot的@ConfigurationProperties2. 使用@Valu

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

SQL Server配置管理器无法打开的四种解决方法

《SQLServer配置管理器无法打开的四种解决方法》本文总结了SQLServer配置管理器无法打开的四种解决方法,文中通过图文示例介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录方法一:桌面图标进入方法二:运行窗口进入检查版本号对照表php方法三:查找文件路径方法四:检查 S

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Java 线程安全与 volatile与单例模式问题及解决方案

《Java线程安全与volatile与单例模式问题及解决方案》文章主要讲解线程安全问题的五个成因(调度随机、变量修改、非原子操作、内存可见性、指令重排序)及解决方案,强调使用volatile关键字... 目录什么是线程安全线程安全问题的产生与解决方案线程的调度是随机的多个线程对同一个变量进行修改线程的修改操

Redis出现中文乱码的问题及解决

《Redis出现中文乱码的问题及解决》:本文主要介绍Redis出现中文乱码的问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 问题的产生2China编程. 问题的解决redihttp://www.chinasem.cns数据进制问题的解决中文乱码问题解决总结

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文