本科生学习GNSS算法 中级教程(二)- rtklib多系统多频单点定位算法 - tgd修正以及代码实现

本文主要是介绍本科生学习GNSS算法 中级教程(二)- rtklib多系统多频单点定位算法 - tgd修正以及代码实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

如何修正码偏差

上一节介绍了码偏差产生的原理,以及我们为何要修正它。

给了一篇参考论文,论文中有一节专门介绍如何对多系统多频点的码片差进行修正。下面给出论文中的截图:

从上图中的公式我们可以知道,gps的P1和P2的修正量都是Tgd乘以一个系数。而GLO和GAL系统和GPS类似一样的修正逻辑。

BDS系统由于是以B3作为卫星钟差的参考基准,所以其修正公式如下:


代码实现

rtklib中单点定位程序调用修正码偏差的函数为pntpos.c->prange(),为和原始区分,我们支持多频修正的函数取名为prange_mulfreq(),并多传入一个频率的index,用来指示计算哪个频率的修正后的伪距。

GPS系统的修正逻辑如下,注意查看我增加的注释:

if (sys == SYS_GPS || sys == SYS_QZS){gamma = SQR(FREQ1 / FREQ2);b1 = gettgd(sat, nav, 0); /* TGD (m) */switch (obs->code[k]){/*for L1C, we need to calibrate the DCB between P1 and C1. but here we ignore it*/case CODE_L1C:case CODE_L1P:tgd = b1;break;/*for L2P, calibrate tgd according the paper*/case CODE_L2P:case CODE_L2W:tgd = b1 * gamma;break;/*no L5 tgd info in broadcast nav, give the default value 0*/case CODE_L5Q:tgd = 0.0;break;}}

BDS系统修正方法与其他有区别,将BDS系统的修正逻辑粘贴如下:

else if (sys == SYS_CMP){   switch (obs->code[k]){case CODE_L2I:tgd = gettgd(sat, nav, 0);break;case CODE_L7I:tgd = gettgd(sat, nav, 1);break;/*for BDS sys, the reference frequency is 6I. that's why the correction in 6I is zeror*/case CODE_L6I:tgd = 0.0;break;case CODE_L1P:tgd = gettgd(sat, nav, 2);break;case CODE_L5P:tgd = gettgd(sat, nav, 3);break;}}

BDS2支持的信号为2I/7I/6I,一共三频,一般认为按顺序叫作北斗的第一、二、三频点。而BDS3则支持更多的频点,其播发了2I/6I,并且为了与GPS/GAL兼容互操作,播发了新的1C以及5P。所有的诸如2I/1P/5P的频点叫法,都来自于rinex的中的频率定义,详情请参考该文档。

最后贴上整个prange_mulfreq()函数。GLO修正逻辑部分未做完全考虑,可能存在错误。个人不太喜欢也不太建议使用GLO系统,现有的GPS+BDS+GAL卫星数已完全足够使用。

函数的前半部分其实保留了原函数的功能,即对无电离层组合观测值的修正。


整个函数

/* psendorange with code bias correction -------------------------------------*/
static double prange_mulfreq(const obsd_t *obs, const nav_t *nav, const prcopt_t *opt, const int k,double *var)
{double P1, P2, gamma, b1, b2, P, tgd;int sat, sys;sat = obs->sat;sys = satsys(sat, NULL);P1 = obs->P[0];P2 = obs->P[1];*var = 0.0;if (P1 == 0.0 || (opt->ionoopt == IONOOPT_IFLC && P2 == 0.0))return 0.0;/* P1-C1,P2-C2 DCB correction */if (sys == SYS_GPS || sys == SYS_GLO){if (obs->code[0] == CODE_L1C)P1 += nav->cbias[sat - 1][1]; /* C1->P1 */if (obs->code[1] == CODE_L2C)P2 += nav->cbias[sat - 1][2]; /* C2->P2 */}if (opt->ionoopt == IONOOPT_IFLC){ /* dual-frequency */if (sys == SYS_GPS || sys == SYS_QZS){ /* L1-L2,G1-G2 */gamma = SQR(FREQ1 / FREQ2);return (P2 - gamma * P1) / (1.0 - gamma);}else if (sys == SYS_GLO){ /* G1-G2 */gamma = SQR(FREQ1_GLO / FREQ2_GLO);return (P2 - gamma * P1) / (1.0 - gamma);}else if (sys == SYS_GAL){ /* E1-E5b */gamma = SQR(FREQ1 / FREQ7);if (getseleph(SYS_GAL)){                                                    /* F/NAV */P2 -= gettgd(sat, nav, 0) - gettgd(sat, nav, 1); /* BGD_E5aE5b */}return (P2 - gamma * P1) / (1.0 - gamma);}else if (sys == SYS_CMP){ /* B1-B2 */gamma = SQR(((obs->code[0] == CODE_L2I) ? FREQ1_CMP : FREQ1) / FREQ2_CMP);if (obs->code[0] == CODE_L2I)b1 = gettgd(sat, nav, 0); /* TGD_B1I */else if (obs->code[0] == CODE_L1P)b1 = gettgd(sat, nav, 2); /* TGD_B1Cp */elseb1 = gettgd(sat, nav, 2) + gettgd(sat, nav, 4); /* TGD_B1Cp+ISC_B1Cd */b2 = gettgd(sat, nav, 1);                           /* TGD_B2I/B2bI (m) */return ((P2 - gamma * P1) - (b2 - gamma * b1)) / (1.0 - gamma);}else if (sys == SYS_IRN){ /* L5-S */gamma = SQR(FREQ5 / FREQ9);return (P2 - gamma * P1) / (1.0 - gamma);}}else{ /* single-freq */if (k < 0 || k >= (NFREQ + NEXOBS)){return 0.0;}P = obs->P[k];*var = SQR(ERR_CBIAS);tgd = 0.0;if (sys == SYS_GPS || sys == SYS_QZS){gamma = SQR(FREQ1 / FREQ2);b1 = gettgd(sat, nav, 0); /* TGD (m) */switch (obs->code[k]){/*for L1C, we need to calibrate the DCB between P1 and C1. but here we ignore it*/case CODE_L1C:case CODE_L1P:tgd = b1;break;/*for L2P, calibrate tgd according the paper*/case CODE_L2P:case CODE_L2W:tgd = b1 * gamma;break;/*no L5 tgd info in broadcast nav, give the default value 0*/case CODE_L5Q:tgd = 0.0;break;}}else if (sys == SYS_GLO){   /*for GLO, the logic may has error*/gamma = SQR(FREQ1_GLO / FREQ2_GLO);b1 = gettgd(sat, nav, 0); /* -dtaun (m) */b1 = b1 / (gamma - 1.0);switch (obs->code[k]){case CODE_L1C:case CODE_L1P:tgd = b1;break;case CODE_L2C:case CODE_L2P:tgd = b1 * gamma;break;}}else if (sys == SYS_GAL){   /*for GAL sys, there is two ephemerises*/if (getseleph(SYS_GAL))b1 = gettgd(sat, nav, 0); /* BGD_E1E5a */elseb1 = gettgd(sat, nav, 1); /* BGD_E1E5b */switch (obs->code[k]){case CODE_L1C:tgd = b1;break;case CODE_L5Q:gamma = SQR(FREQ1 / FREQ5);tgd = b1 * gamma;break;case CODE_L7Q:gamma = SQR(FREQ1 / FREQ7);tgd = b1 * gamma;break;}}else if (sys == SYS_CMP){   switch (obs->code[k]){case CODE_L2I:tgd = gettgd(sat, nav, 0);break;case CODE_L7I:tgd = gettgd(sat, nav, 1);break;/*for BDS sys, the reference frequency is 6I. that's why the correction in 6I is zeror*/case CODE_L6I:tgd = 0.0;break;case CODE_L1P:tgd = gettgd(sat, nav, 2);break;case CODE_L5P:tgd = gettgd(sat, nav, 3);break;}}return P - tgd;}return P1;
}

代码已上传到国内版git上(gitee,主要是网速快)。代码链接 请在个人公众号回复 git 获取。在此也建议大家使用git工具clone代码,这样可以便于查看代码的更新历史,以及方便拉取最新的代码。

另外本节的代码在mulfreq-spp分支,注意分支切换。master分支是原始的rtklib代码。另外虽然mulfreq-spp分支有一些其他的改动,但暂时结果的正确性无法保证,我还在开发中。

另外一个,建议大家使用vscode来查看代码。git和vscode的使用请自行搜索博客或者bilibili。

下一节我会讲一下如何使用git查看代码的历史以及使用vscode查看每次提交的改动,这样方便大家理解代码的修改思路。

欢迎关注个人公众号

个人公众号 GNSS和自动驾驶,会持续更新GNSS的基础教程/进阶教程/GNSS在自动驾驶中的应用/自动驾驶技术进展等。

这篇关于本科生学习GNSS算法 中级教程(二)- rtklib多系统多频单点定位算法 - tgd修正以及代码实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/326169

相关文章

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

PyCharm中配置PyQt的实现步骤

《PyCharm中配置PyQt的实现步骤》PyCharm是JetBrains推出的一款强大的PythonIDE,结合PyQt可以进行pythion高效开发桌面GUI应用程序,本文就来介绍一下PyCha... 目录1. 安装China编程PyQt1.PyQt 核心组件2. 基础 PyQt 应用程序结构3. 使用 Q

Linux系统中查询JDK安装目录的几种常用方法

《Linux系统中查询JDK安装目录的几种常用方法》:本文主要介绍Linux系统中查询JDK安装目录的几种常用方法,方法分别是通过update-alternatives、Java命令、环境变量及目... 目录方法 1:通过update-alternatives查询(推荐)方法 2:检查所有已安装的 JDK方

2025版mysql8.0.41 winx64 手动安装详细教程

《2025版mysql8.0.41winx64手动安装详细教程》本文指导Windows系统下MySQL安装配置,包含解压、设置环境变量、my.ini配置、初始化密码获取、服务安装与手动启动等步骤,... 目录一、下载安装包二、配置环境变量三、安装配置四、启动 mysql 服务,修改密码一、下载安装包安装地

Linux系统之lvcreate命令使用解读

《Linux系统之lvcreate命令使用解读》lvcreate是LVM中创建逻辑卷的核心命令,支持线性、条带化、RAID、镜像、快照、瘦池和缓存池等多种类型,实现灵活存储资源管理,需注意空间分配、R... 目录lvcreate命令详解一、命令概述二、语法格式三、核心功能四、选项详解五、使用示例1. 创建逻

电脑提示d3dx11_43.dll缺失怎么办? DLL文件丢失的多种修复教程

《电脑提示d3dx11_43.dll缺失怎么办?DLL文件丢失的多种修复教程》在使用电脑玩游戏或运行某些图形处理软件时,有时会遇到系统提示“d3dx11_43.dll缺失”的错误,下面我们就来分享超... 在计算机使用过程中,我们可能会遇到一些错误提示,其中之一就是缺失某个dll文件。其中,d3dx11_4

Python实现批量提取BLF文件时间戳

《Python实现批量提取BLF文件时间戳》BLF(BinaryLoggingFormat)作为Vector公司推出的CAN总线数据记录格式,被广泛用于存储车辆通信数据,本文将使用Python轻松提取... 目录一、为什么需要批量处理 BLF 文件二、核心代码解析:从文件遍历到数据导出1. 环境准备与依赖库

Linux下在线安装启动VNC教程

《Linux下在线安装启动VNC教程》本文指导在CentOS7上在线安装VNC,包含安装、配置密码、启动/停止、清理重启步骤及注意事项,强调需安装VNC桌面以避免黑屏,并解决端口冲突和目录权限问题... 目录描述安装VNC安装 VNC 桌面可能遇到的问题总结描js述linux中的VNC就类似于Window