MATLAB实现INFO-ELM向量加权算法优化极限学习机多输入单输出回归预测

本文主要是介绍MATLAB实现INFO-ELM向量加权算法优化极限学习机多输入单输出回归预测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机 

⛄ 内容介绍

极限学习机(Extreme Learning Machine, ELM)是近几年发展起来的一种有效的新型单隐层前馈神经网络学习算法,和传统学习算法不同的是,ELM算法的网络参数随机选取,无需调节,输出权值是通过对平方损失函数最小化得到的最小二乘解,因此该算法具有较快的学习速度和良好的泛化性能,并在多模式分类,非线性预测等领域得到了广泛的应用.但是ELM在学习过程中也不可避免的存在众多缺点,其参数的随机选取导致一系列非最优参数的生成,使得所需隐含层节点数多于传统学习算法,影响其泛化性能,并导致系统的病态;在学习过程中仅仅只利用了输入参数的信息进行计算,而忽略了非常有价值的实际输出值;将其应用于工业生产中所得到的精度不能满足实际的标准等等.针对上述缺点,本文提出了一种对ELM的探路者搜索算法极限学习机(PFA-ELM)。

传统的单隐层神经网络由三部分组成,分别是输入层、隐含层和输出层,输入层神经元节点个数即输入变量的个数,隐含层节点个数则需要人为给定,输出层节点个数也就是输出变量的个数。在2006年,新加坡南洋理工大学的Huang等[16]在传统的单隐层神经网络的基础上提出了一种新的前馈神经网络学习算法,命名为极限学习机(extremelearningmachine,ELM),不同于传统的基于梯度的前馈神经网络算法,该方法随机产生隐含层与输入层之间的连接权值及隐含层神经元的阈值,训练过程中只需要设置隐含神经元的个数便可获得唯一最优解,极限学习机网络结构如图1所示。

⛄ 部分代码

function [output] = my_map(type, raw_data, raw_data_max, raw_data_min, max, min)

if type ~= 0

    output = my_pos_map(raw_data, raw_data_max, raw_data_min, max, min);

end

if type ~= 1 

    output = my_rev_map(raw_data, raw_data_max, raw_data_min, max, min);

end

end

function [out] = my_pos_map(raw_data, raw_data_max, raw_data_min, max, min)

    for i = 1:length(raw_data')

        out(i) = (max - min) * (raw_data(i) - raw_data_min) / (raw_data_max - raw_data_min) + min;

    end

end

function [out] = my_rev_map(raw_data, raw_data_max, raw_data_min, max, min)

    for i = 1:length(raw_data')

        out(i) = (raw_data(i) - min) * (raw_data_max - raw_data_min) / (max - min) + raw_data_min;

    end

end

⛄ 运行结果

⛄ 参考文献

[1] 吉威, 刘勇, 甄佳奇,等. 基于随机权重粒子群优化极限学习机的土壤湿度预测[J]. 新疆大学学报:自然科学版, 2020, 37(2):7.

[2] 王一宾, 程玉胜, 何月,等. 回归核极限学习机的多标记学习算法[J]. 模式识别与人工智能, 2018, 31(5):12.

[3] 何月. 关联规则回归核极限学习机的多标记学习算法[D]. 安庆师范大学.

[4] 蔡伟彪. 基于稳健性改进的极限学习机回归算法研究[D]. 湘潭大学.

[5] 付学敏, 王辉. 基于极限学习机的汽油辛烷值含量回归预测建模研究[J]. 景德镇高专学报, 2021, 036(003):73-76.

[6] 刘学艺. 极限学习机算法及其在高炉冶炼过程建模中的应用研究[D]. 浙江大学.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除

❤️ 关注我领取海量matlab电子书和数学建模资料

这篇关于MATLAB实现INFO-ELM向量加权算法优化极限学习机多输入单输出回归预测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/325226

相关文章

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Java实现将HTML文件与字符串转换为图片

《Java实现将HTML文件与字符串转换为图片》在Java开发中,我们经常会遇到将HTML内容转换为图片的需求,本文小编就来和大家详细讲讲如何使用FreeSpire.DocforJava库来实现这一功... 目录前言核心实现:html 转图片完整代码场景 1:转换本地 HTML 文件为图片场景 2:转换 H

C#使用Spire.Doc for .NET实现HTML转Word的高效方案

《C#使用Spire.Docfor.NET实现HTML转Word的高效方案》在Web开发中,HTML内容的生成与处理是高频需求,然而,当用户需要将HTML页面或动态生成的HTML字符串转换为Wor... 目录引言一、html转Word的典型场景与挑战二、用 Spire.Doc 实现 HTML 转 Word1

C#实现一键批量合并PDF文档

《C#实现一键批量合并PDF文档》这篇文章主要为大家详细介绍了如何使用C#实现一键批量合并PDF文档功能,文中的示例代码简洁易懂,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言效果展示功能实现1、添加文件2、文件分组(书签)3、定义页码范围4、自定义显示5、定义页面尺寸6、PDF批量合并7、其他方法

SpringBoot实现不同接口指定上传文件大小的具体步骤

《SpringBoot实现不同接口指定上传文件大小的具体步骤》:本文主要介绍在SpringBoot中通过自定义注解、AOP拦截和配置文件实现不同接口上传文件大小限制的方法,强调需设置全局阈值远大于... 目录一  springboot实现不同接口指定文件大小1.1 思路说明1.2 工程启动说明二 具体实施2

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

Java实现在Word文档中添加文本水印和图片水印的操作指南

《Java实现在Word文档中添加文本水印和图片水印的操作指南》在当今数字时代,文档的自动化处理与安全防护变得尤为重要,无论是为了保护版权、推广品牌,还是为了在文档中加入特定的标识,为Word文档添加... 目录引言Spire.Doc for Java:高效Word文档处理的利器代码实战:使用Java为Wo

Java实现远程执行Shell指令

《Java实现远程执行Shell指令》文章介绍使用JSch在SpringBoot项目中实现远程Shell操作,涵盖环境配置、依赖引入及工具类编写,详解分号和双与号执行多指令的区别... 目录软硬件环境说明编写执行Shell指令的工具类总结jsch(Java Secure Channel)是SSH2的一个纯J

使用Python实现Word文档的自动化对比方案

《使用Python实现Word文档的自动化对比方案》我们经常需要比较两个Word文档的版本差异,无论是合同修订、论文修改还是代码文档更新,人工比对不仅效率低下,还容易遗漏关键改动,下面通过一个实际案例... 目录引言一、使用python-docx库解析文档结构二、使用difflib进行差异比对三、高级对比方

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达