python从date目录导入数据集_Python:PyTorch 使用 Torchvision 加载数据集 (八十一)

本文主要是介绍python从date目录导入数据集_Python:PyTorch 使用 Torchvision 加载数据集 (八十一),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

加载图像数据

到目前为止,我们使用的数据都是人工数据集,你很少会在实际项目中用到这样的数据集。相反,在实际项目中,你可能会处理一些全尺寸的图像,比如手机相机拍摄的图片。在这个 notebook 中,我们将会学习如何加载图像,并使用它们来训练神经网络。

我们将用到来自 Kaggle 的猫狗照片数据集。下面是一些图片示例:

rZlgnSfTEz.png

我们将使用这个数据集来训练一个能够对猫狗图像进行分类的神经网络。如今看来,这似乎并不是什么伟大的成就,但在五年之前,这对计算机视觉系统来说极具挑战性。

%matplotlib inline

%config InlineBackend.figure_format = 'retina'

import matplotlib.pyplot as plt

import torch

from torchvision import datasets, transforms

import helper

加载图像数据最简单是方法是使用 torchvision 中的 datasets.ImageFolder(资料)。

dataset = datasets.ImageFolder('path/to/data', transform=transforms)

'path/to/data' 是通往数据目录的文件路径,transforms 是一个处理步骤的列表,使用 torchvision 中的 transforms 模块构建。ImageFolder 中的文件和目录应按以下格式构建:

root/dog/xxx.png

root/dog/xxy.png

root/dog/xxz.png

root/cat/123.png

root/cat/nsdf3.png

root/cat/asd932_.png

每个类都有各自存储图像的目录(cat 和 dog)。接着,这些图像将被贴上摘自目录名的标签。所以在这里,图像 123.png 在加载时将被贴上类标签 cat。你可以从这里直接下载我们早已构建好的数据集。我已经将它分成了训练集和测试集。

转换

当你使用 ImageFolder 加载数据后,你需要定义一些转换。举个例子,这些图像的尺寸都不相同,但我们需要统一尺寸以便进行训练。你可以使用 transforms.Resize() 来重新确定图像尺寸,也可以使用 transforms.CenterCrop()、transforms.RandomResizedCrop() 等进行切割。我们还需要使用 transforms.ToTensor() 来将图像转换为 PyTorch 张量。通常,你会使用 transforms.Compose() 来将这些转换结合到一条流水线中,这条流水线接收包含转换的列表,并按顺序运行。如下面的例子所示,它首先进行缩放,接着切割,再转换为张量:

transforms = transforms.Compose([transforms.Resize(255),

transforms.CenterCrop(224),

transforms.ToTensor()])

我们可以使用许多种转换,接下来我会逐步讲解,你也可以查看这里的资料。

Data Loader

在加载 ImageFolder 后,你需要将它传递给一个 DataLoader。DataLoader 接收数据集(比如你从 ImageFolder 中获取的数据集),并返回不同批次的图像以及对应的标签。你可以设置不同参数

这篇关于python从date目录导入数据集_Python:PyTorch 使用 Torchvision 加载数据集 (八十一)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/324444

相关文章

SpringBoot中使用Flux实现流式返回的方法小结

《SpringBoot中使用Flux实现流式返回的方法小结》文章介绍流式返回(StreamingResponse)在SpringBoot中通过Flux实现,优势包括提升用户体验、降低内存消耗、支持长连... 目录背景流式返回的核心概念与优势1. 提升用户体验2. 降低内存消耗3. 支持长连接与实时通信在Sp

基于Python开发Windows屏幕控制工具

《基于Python开发Windows屏幕控制工具》在数字化办公时代,屏幕管理已成为提升工作效率和保护眼睛健康的重要环节,本文将分享一个基于Python和PySide6开发的Windows屏幕控制工具,... 目录概述功能亮点界面展示实现步骤详解1. 环境准备2. 亮度控制模块3. 息屏功能实现4. 息屏时间

Python如何去除图片干扰代码示例

《Python如何去除图片干扰代码示例》图片降噪是一个广泛应用于图像处理的技术,可以提高图像质量和相关应用的效果,:本文主要介绍Python如何去除图片干扰的相关资料,文中通过代码介绍的非常详细,... 目录一、噪声去除1. 高斯噪声(像素值正态分布扰动)2. 椒盐噪声(随机黑白像素点)3. 复杂噪声(如伪

Python中图片与PDF识别文本(OCR)的全面指南

《Python中图片与PDF识别文本(OCR)的全面指南》在数据爆炸时代,80%的企业数据以非结构化形式存在,其中PDF和图像是最主要的载体,本文将深入探索Python中OCR技术如何将这些数字纸张转... 目录一、OCR技术核心原理二、python图像识别四大工具库1. Pytesseract - 经典O

基于Linux的ffmpeg python的关键帧抽取

《基于Linux的ffmpegpython的关键帧抽取》本文主要介绍了基于Linux的ffmpegpython的关键帧抽取,实现以按帧或时间间隔抽取关键帧,文中通过示例代码介绍的非常详细,对大家的学... 目录1.FFmpeg的环境配置1) 创建一个虚拟环境envjavascript2) ffmpeg-py

python使用库爬取m3u8文件的示例

《python使用库爬取m3u8文件的示例》本文主要介绍了python使用库爬取m3u8文件的示例,可以使用requests、m3u8、ffmpeg等库,实现获取、解析、下载视频片段并合并等步骤,具有... 目录一、准备工作二、获取m3u8文件内容三、解析m3u8文件四、下载视频片段五、合并视频片段六、错误

Python中提取文件名扩展名的多种方法实现

《Python中提取文件名扩展名的多种方法实现》在Python编程中,经常会遇到需要从文件名中提取扩展名的场景,Python提供了多种方法来实现这一功能,不同方法适用于不同的场景和需求,包括os.pa... 目录技术背景实现步骤方法一:使用os.path.splitext方法二:使用pathlib模块方法三

Python打印对象所有属性和值的方法小结

《Python打印对象所有属性和值的方法小结》在Python开发过程中,调试代码时经常需要查看对象的当前状态,也就是对象的所有属性和对应的值,然而,Python并没有像PHP的print_r那样直接提... 目录python中打印对象所有属性和值的方法实现步骤1. 使用vars()和pprint()2. 使

gitlab安装及邮箱配置和常用使用方式

《gitlab安装及邮箱配置和常用使用方式》:本文主要介绍gitlab安装及邮箱配置和常用使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1.安装GitLab2.配置GitLab邮件服务3.GitLab的账号注册邮箱验证及其分组4.gitlab分支和标签的

SpringBoot3应用中集成和使用Spring Retry的实践记录

《SpringBoot3应用中集成和使用SpringRetry的实践记录》SpringRetry为SpringBoot3提供重试机制,支持注解和编程式两种方式,可配置重试策略与监听器,适用于临时性故... 目录1. 简介2. 环境准备3. 使用方式3.1 注解方式 基础使用自定义重试策略失败恢复机制注意事项