python从date目录导入数据集_Python:PyTorch 使用 Torchvision 加载数据集 (八十一)

本文主要是介绍python从date目录导入数据集_Python:PyTorch 使用 Torchvision 加载数据集 (八十一),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

加载图像数据

到目前为止,我们使用的数据都是人工数据集,你很少会在实际项目中用到这样的数据集。相反,在实际项目中,你可能会处理一些全尺寸的图像,比如手机相机拍摄的图片。在这个 notebook 中,我们将会学习如何加载图像,并使用它们来训练神经网络。

我们将用到来自 Kaggle 的猫狗照片数据集。下面是一些图片示例:

rZlgnSfTEz.png

我们将使用这个数据集来训练一个能够对猫狗图像进行分类的神经网络。如今看来,这似乎并不是什么伟大的成就,但在五年之前,这对计算机视觉系统来说极具挑战性。

%matplotlib inline

%config InlineBackend.figure_format = 'retina'

import matplotlib.pyplot as plt

import torch

from torchvision import datasets, transforms

import helper

加载图像数据最简单是方法是使用 torchvision 中的 datasets.ImageFolder(资料)。

dataset = datasets.ImageFolder('path/to/data', transform=transforms)

'path/to/data' 是通往数据目录的文件路径,transforms 是一个处理步骤的列表,使用 torchvision 中的 transforms 模块构建。ImageFolder 中的文件和目录应按以下格式构建:

root/dog/xxx.png

root/dog/xxy.png

root/dog/xxz.png

root/cat/123.png

root/cat/nsdf3.png

root/cat/asd932_.png

每个类都有各自存储图像的目录(cat 和 dog)。接着,这些图像将被贴上摘自目录名的标签。所以在这里,图像 123.png 在加载时将被贴上类标签 cat。你可以从这里直接下载我们早已构建好的数据集。我已经将它分成了训练集和测试集。

转换

当你使用 ImageFolder 加载数据后,你需要定义一些转换。举个例子,这些图像的尺寸都不相同,但我们需要统一尺寸以便进行训练。你可以使用 transforms.Resize() 来重新确定图像尺寸,也可以使用 transforms.CenterCrop()、transforms.RandomResizedCrop() 等进行切割。我们还需要使用 transforms.ToTensor() 来将图像转换为 PyTorch 张量。通常,你会使用 transforms.Compose() 来将这些转换结合到一条流水线中,这条流水线接收包含转换的列表,并按顺序运行。如下面的例子所示,它首先进行缩放,接着切割,再转换为张量:

transforms = transforms.Compose([transforms.Resize(255),

transforms.CenterCrop(224),

transforms.ToTensor()])

我们可以使用许多种转换,接下来我会逐步讲解,你也可以查看这里的资料。

Data Loader

在加载 ImageFolder 后,你需要将它传递给一个 DataLoader。DataLoader 接收数据集(比如你从 ImageFolder 中获取的数据集),并返回不同批次的图像以及对应的标签。你可以设置不同参数

这篇关于python从date目录导入数据集_Python:PyTorch 使用 Torchvision 加载数据集 (八十一)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/324444

相关文章

Spring Boot整合Redis注解实现增删改查功能(Redis注解使用)

《SpringBoot整合Redis注解实现增删改查功能(Redis注解使用)》文章介绍了如何使用SpringBoot整合Redis注解实现增删改查功能,包括配置、实体类、Repository、Se... 目录配置Redis连接定义实体类创建Repository接口增删改查操作示例插入数据查询数据删除数据更

使用python生成固定格式序号的方法详解

《使用python生成固定格式序号的方法详解》这篇文章主要为大家详细介绍了如何使用python生成固定格式序号,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以参考一下... 目录生成结果验证完整生成代码扩展说明1. 保存到文本文件2. 转换为jsON格式3. 处理特殊序号格式(如带圈数字)4

Java使用Swing生成一个最大公约数计算器

《Java使用Swing生成一个最大公约数计算器》这篇文章主要为大家详细介绍了Java使用Swing生成一个最大公约数计算器的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一下... 目录第一步:利用欧几里得算法计算最大公约数欧几里得算法的证明情形 1:b=0情形 2:b>0完成相关代码第二步:加

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

Linux join命令的使用及说明

《Linuxjoin命令的使用及说明》`join`命令用于在Linux中按字段将两个文件进行连接,类似于SQL的JOIN,它需要两个文件按用于匹配的字段排序,并且第一个文件的换行符必须是LF,`jo... 目录一. 基本语法二. 数据准备三. 指定文件的连接key四.-a输出指定文件的所有行五.-o指定输出

Linux jq命令的使用解读

《Linuxjq命令的使用解读》jq是一个强大的命令行工具,用于处理JSON数据,它可以用来查看、过滤、修改、格式化JSON数据,通过使用各种选项和过滤器,可以实现复杂的JSON处理任务... 目录一. 简介二. 选项2.1.2.2-c2.3-r2.4-R三. 字段提取3.1 普通字段3.2 数组字段四.

Linux kill正在执行的后台任务 kill进程组使用详解

《Linuxkill正在执行的后台任务kill进程组使用详解》文章介绍了两个脚本的功能和区别,以及执行这些脚本时遇到的进程管理问题,通过查看进程树、使用`kill`命令和`lsof`命令,分析了子... 目录零. 用到的命令一. 待执行的脚本二. 执行含子进程的脚本,并kill2.1 进程查看2.2 遇到的

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

k8s按需创建PV和使用PVC详解

《k8s按需创建PV和使用PVC详解》Kubernetes中,PV和PVC用于管理持久存储,StorageClass实现动态PV分配,PVC声明存储需求并绑定PV,通过kubectl验证状态,注意回收... 目录1.按需创建 PV(使用 StorageClass)创建 StorageClass2.创建 PV