【论文笔记】基于深度学习的端到端无监督配准模型——变形图像配准网络(Deformable Image Registration Network, DIRNet)

本文主要是介绍【论文笔记】基于深度学习的端到端无监督配准模型——变形图像配准网络(Deformable Image Registration Network, DIRNet),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文是论文 End-to-End Unsupervised Deformable Image Registration with a Convolutional Neural Network 的阅读笔记。

文章提出了一种端到端的无监督配准模型——变形图像配准网络(Deformable Image Registration Network, DIRNet),并在手写数字数据集 MNIST 和心脏电影 MR 数据集 SCD 上做了实验。这个模型包括三个部分:一个由 CNN 实现的回归器、空间变换网络、重采样器。该模型是第一个基于深度学习的无监督端对端的图像配准模型。

一、网络结构

DIRNet 由回归器、空间变换器和重采样器三部分组成。如上图所示,回归器以 fixed image 和 moving image 的图像块作为输入,其输出的形变参数作为空间变换器的输入,空间变换器产生一个形变场,然后输入到重采样器中,重采样器根据形变场对 moving image 进行变换,得到配准之后的图像。整个网络通过通过计算 fixed image 和 warped moving image 之间的相似性作为损失函数来更新网络的参数。

1. 回归器

回归器的输入是 fixed image 和 moving image 中对应的图像块(patch),它利用 CNN 预测一个局部的形变参数。其网络结构具体是:4 个 3 × 3 3\times3 3×3 的卷积层,采用 0 填充,并且使用 2 × 2 2\times2 2×2 的下采样层,下采样层具体使用的是平均池化操作,然后是一个 1 × 1 1\times1 1×1 的卷积层作为全连接层。每一层中都使用了批正则化,除最后一个卷积层外每个卷积层后都跟着一个指数线性单元(ELU)作为激活函数。

2. 空间变换器

空间变换器的输入是回归器预测的形变参数,其输出是一个位移向量场(形变场),具体的,空间转换器会根据薄板样条产生一个形变场,这种更适合于预测全局的形变场,即输入是整幅图像;当输入是图像块时,预测的是局部的形变场,这时 B 样表转换则更适合。

3. 重采样器

重采样器的输入是一个形变场,其输出是变形后的 moving image。

模型的优化器采用的是随机梯度下降优化器,图像之间的相似度损失采用的是归一化的互相关。

二、实验结果

1. MNIST 数据集

在处理 MNIST 数据集时,由于有 0~9 十种不同的手写数字,所以是对每一类的图像分别进行训练的,并且在训练时随机选择一个图片作为 fixed image。

上图是对 MNIST 数据集进行训练的结果,第一行是每一类图像取平均值之后得到的,第二行是 fixed image,第三行是配准之后的结果。

2. SCD 数据集

为了评估不同的网络设置对效果的影响,在 SCD 数据集上进行训练时,以第二部分网络结构中提到的设置作为基准,分别对以下内容做了实验:

为了评估不同的下采样方法的影响,DIRNet-A1 模型使用的是最大池化操作,DIRNet-A2 模型使用的是步长为 2 的卷积操作。

为了评估不同的空间变换器的影响,DIRNet-B1 使用的是二次 B 样条变换器,DIRNet-B2 使用的是薄板样条变换器。

为了评估不同大小的接收野(即patch大小)的影响,DIRNet-C1 使用的是有重叠的图像块,该图像块大小与B样条控制点的捕获范围一致,这是通过在最终池层前后添加额外的 3 × 3 3\times3 3×3 的卷积层来实现的;DIRNet-C2 通过将最后一层 1 × 1 1\times1 1×1 的卷积层替换为 3 × 3 3\times3 3×3 的卷积层,然后是一个下采样层、两个 1024 节点的完全连接层和一个 16 × 16 16\times16 16×16 的二维控制点的最终输出层来分析每个控制点的全图像切片。

上图是根据上述不同的实验设置得到的训练结果,其中每一行分别表示配准之前的损失、SimpleElastix 模型训练的损失以及不同设置的 DIRNet 的损失。 9 5 t h S D 95^{th} SD 95thSD 是 surface distance(表面距离)的缩写, M A D MAD MAD 是 mean absolute surface distance(平均绝对表面距离的缩写)。在所有的模型中,B2 训练时收敛的较慢,但是效果比基准网络要好,C1 的效果是最好的。

上图是 DIRNet 和 SimpleElastix 配准结果的对比图,可以看出来 DIRNet 的配准结果更接近于 fixed image。

这篇关于【论文笔记】基于深度学习的端到端无监督配准模型——变形图像配准网络(Deformable Image Registration Network, DIRNet)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/323164

相关文章

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

Python中OpenCV与Matplotlib的图像操作入门指南

《Python中OpenCV与Matplotlib的图像操作入门指南》:本文主要介绍Python中OpenCV与Matplotlib的图像操作指南,本文通过实例代码给大家介绍的非常详细,对大家的学... 目录一、环境准备二、图像的基本操作1. 图像读取、显示与保存 使用OpenCV操作2. 像素级操作3.

C/C++的OpenCV 进行图像梯度提取的几种实现

《C/C++的OpenCV进行图像梯度提取的几种实现》本文主要介绍了C/C++的OpenCV进行图像梯度提取的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录预www.chinasem.cn备知识1. 图像加载与预处理2. Sobel 算子计算 X 和 Y

c/c++的opencv图像金字塔缩放实现

《c/c++的opencv图像金字塔缩放实现》本文主要介绍了c/c++的opencv图像金字塔缩放实现,通过对原始图像进行连续的下采样或上采样操作,生成一系列不同分辨率的图像,具有一定的参考价值,感兴... 目录图像金字塔简介图像下采样 (cv::pyrDown)图像上采样 (cv::pyrUp)C++ O

SpringBoot整合Sa-Token实现RBAC权限模型的过程解析

《SpringBoot整合Sa-Token实现RBAC权限模型的过程解析》:本文主要介绍SpringBoot整合Sa-Token实现RBAC权限模型的过程解析,本文给大家介绍的非常详细,对大家的学... 目录前言一、基础概念1.1 RBAC模型核心概念1.2 Sa-Token核心功能1.3 环境准备二、表结

Linux网络配置之网桥和虚拟网络的配置指南

《Linux网络配置之网桥和虚拟网络的配置指南》这篇文章主要为大家详细介绍了Linux中配置网桥和虚拟网络的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 一、网桥的配置在linux系统中配置一个新的网桥主要涉及以下几个步骤:1.为yum仓库做准备,安装组件epel-re

Spring Boot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)

《SpringBoot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)》:本文主要介绍SpringBoot拦截器Interceptor与过滤器Filter深度解析... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现与实