深度强化学习5:Q-learning用于连续动作 (NAF算法)

2023-11-01 12:20

本文主要是介绍深度强化学习5:Q-learning用于连续动作 (NAF算法),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【李宏毅深度强化学习笔记】5、Q-learning用于连续动作 (NAF算法)

【李宏毅深度强化学习笔记】2、Proximal Policy Optimization (PPO) 算法

【李宏毅深度强化学习笔记】3、Q-learning(Basic Idea)

【李宏毅深度强化学习笔记】4、Q-learning更高阶的算法

【李宏毅深度强化学习笔记】5、Q-learning用于连续动作 (NAF算法)(本文)

【李宏毅深度强化学习笔记】6、Actor-Critic、A2C、A3C、Pathwise Derivative Policy Gradient

【李宏毅深度强化学习笔记】7、Sparse Reward

【李宏毅深度强化学习笔记】8、Imitation Learning

-------------------------------------------------------------------------------------------------------

【李宏毅深度强化学习】视频地址:https://www.bilibili.com/video/av63546968?p=5

课件地址:http://speech.ee.ntu.edu.tw/~tlkagk/courses_MLDS18.html

-------------------------------------------------------------------------------------------------------

 

普通的Q-learning比policy gradient比较容易实现,但是在处理连续动作(比如方向盘要转动多少度)的时候就会显得比较吃力

因为如果action是离散的几个动作,那就可以把这几个动作都代到Q-function去算Q-value。但是如果action是连续的,此时action就是一个vector,vector里面又都有对应的value,那就没办法穷举所有的action去算Q-value。

 先介绍2种容易想到但效果不一定好的方法

1、 穷举action

这个方法sample N个action,一个一个代到Q function里,看哪个a得到的Q value最大。

缺点:即便sample 很多很多个action,还是没办法把所有的action都穷举出来(因为它是连续动作)。这样就会导致结果不那么精确

 

2、使用梯度上升求Q value

使用gradient ascent来求解,看采取什么action能让Q-function得到最大的Q value。

缺点:

  1. 由于使用gradient ascent,可能得到的结果只是局部的最优解
  2. 每次考虑采取哪个a前,都要做一次类似于train network的工作,这个运算量太大

 

以上两种方法是比较容易想到,但是效果不好的方法,下面介绍一个比较好的方法

 

3、Normalized Advantage Functions(NAF)

设计一个新的网络来解连续动作的最优化问题。

论文地址:https://arxiv.org/pdf/1603.00748.pdf

先给出概念如下,后面再讲具体的。

 (公式3-1)

此时Q value 由状态值函数V与动作价值函数 A 相加而得。

(公式3-2)

其中 x 表示状态State,u表示动作Action,θ 是对应的网络参数,A函数可以看成动作 u 在状态 x 下的优势。我们的目的就是要使网络输出的动作 u 所对应的Q值最大。 

具体来说,如下:

从buffer里sample一个batch的transition(s_t,a_t,r_t,s_{t+1}),新的Q function以状态s_t,动作a_t作为输入,依据输入的s_t得到输出\mu (s_t)(vector),\Sigma (s_t)(matrix),V(s_t)(scalar)

其中,在输出\Sigma (s_t)这个矩阵前,其实先输出了矩阵L,矩阵L是对角线都是正数的下三角矩阵。然后根据乔列斯基(Cholesky)分解构造出最终的\Sigma (s_t)这个矩阵(对应公式3-2的P矩阵)。

输入的动作a再与上面三个结果进行组合形成Q function,如下图:

a和\mu (s)转置后,变成1行N列;与矩阵相乘;与a和\mu (s)(N行1列)相乘,最终变成一个普通的数值,即标量(scalar),再加上V(s)就是最后的Q value。另外,在状态s下要做出的action由\mu (s)给出。这样,NAF就实现既输出动作action,也输出这个action对应的Q value

(这时候再看一下,上图的前三项其实就是类似于文章前面的公式3-1和公式3-2的A函数(优势函数)。

 

接下来看如何使Q function输出的Q value达到最大值:

这是NAF的Q function:

优势函数(advantage function)可以看成A(s,a) = -(a-\mu(s))^2\times P,又因为P矩阵在论文中有设定为是正定的矩阵,那么A就是一个小于等于0的值

所以,理想的情况就是当\mu (s) = a,那么此时A函数达到最大值0,那么Q function也得到最大的Q value

 

可能有人疑惑:

既然是通过\mu (s)输出action,那输入的action是干什么的?

(这里是我参考(https://blog.csdn.net/lipengcn/article/details/81840756)后的理解,不一定准确,如果有误请提出!)

输入的action 是从transition中sample的动作,是起到训练网络中的label的作用。目的是让网络输出的\mu (s)不偏离 a 太多并且希望最后\mu (s)逐点收敛于a,从而得到最大的Q value。 

 

下图为NAF执行过程(图参考自https://blog.csdn.net/u013236946/article/details/73243310)

NAF伪代码如下: 

 

Normalized Advantage Functions(NAF)更多内容可参考以下博文

https://blog.csdn.net/lipengcn/article/details/81840756

https://blog.csdn.net/u013236946/article/details/73243310

https://zhuanlan.zhihu.com/p/21609472

 

4、不使用Q-learning而使用actor-critic

具体内容可以看下篇笔记(https://blog.csdn.net/ACL_lihan/article/details/104087569)

这篇关于深度强化学习5:Q-learning用于连续动作 (NAF算法)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/322933

相关文章

深度解析Spring Security 中的 SecurityFilterChain核心功能

《深度解析SpringSecurity中的SecurityFilterChain核心功能》SecurityFilterChain通过组件化配置、类型安全路径匹配、多链协同三大特性,重构了Spri... 目录Spring Security 中的SecurityFilterChain深度解析一、Security

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

SpringBoot开发中十大常见陷阱深度解析与避坑指南

《SpringBoot开发中十大常见陷阱深度解析与避坑指南》在SpringBoot的开发过程中,即使是经验丰富的开发者也难免会遇到各种棘手的问题,本文将针对SpringBoot开发中十大常见的“坑... 目录引言一、配置总出错?是不是同时用了.properties和.yml?二、换个位置配置就失效?搞清楚加

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和